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Abstract

Source localization is an important task in wireless distributed sensor networking system. One of interest
research area is to look for an optimal sensor deployment that can improve the performance of source detection
and localization. In this paper, we will present an optimal sensor deployment based on Cramer-Rao Bound
analysis for energy based acoustic source localization algorithm. Both theoretical analysis and simulation show
that the optimal sensor deployment for this algorithm is to deploy the sensor uniformly and densely in the region
where the target may appear. In general, sensors deploying on the straight line should be avoided. Maximum
sensor interval is calculated to satisfy the maximum localization estimation error bound under certain confidence
level when sensors are uniformly distributed. It has been shown that deploying the sensors densely can get high
performance enhancement over price addition.

I. I NTRODUCTION

Efficient collaborative signal processing algorithms that consume less energy for computation and less
communication bandwidth are important in wireless distributed sensor network communication system [1]. An
important collaborative signal processing task is source localization.

Existing acoustic source localization methods depend on three types of physical measurements: time delay
of arrival (TDOA)[2], direction of arrival (DOA)[3] and source signal strength or power. In practice, DOA
measurement typically require costly antenna array on each node. TDOA is suitable for broadband source
localization and has been extensively investigated . It requires highly accurate measurement of the relative
time delay between sensor nodes. In contrast, received sensor signal strength is comparatively much easier
and less costly to obtain from the time series recordings from each sensor.

In [4], a new approach using the acoustic signal intensity (energy measurement) to estimate the source
location usingML estimation is proposed. In this paper, we will analyze the sensor deployment which can
maximize the performance bounds of the energy based source localization based on Cramer Rao Bound
analysis. It is shown that the optimal sensor deployment is to deploy sensors uniformly and densely in the
sensor field.

CRB is a theoretical lower bound of the variance that we can reach for the unbiased estimation. It is
asymptotically achievable forML estimation if the variable is Gaussian distributed. ByChebyshev’s inequality,
we know that the probability of estimation error is bounded by the ratio of the variance of that random variable
and the square of that estimation error. So, the performance bound of source location can be maximized if the
CRB is minimized. Using this inequality, we predict the maximum sensor interval that can satisfy the required
localization error bounds under certain confidence.

The rest of this paper is organized as follows: In section II, we briefly introduce the modelling of acoustic
source localization. In section III, we derived theCRBfor energy based localization problem. Sensor placement
to achieve better source location estimation is analyzed and verified by the simulations in section IV. In section
V, we calculate the maximum interval that satisfies the estimation error bound under certain confidence level
when sensors are uniformly distributed. A conclusion is given in the section VI.
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II. ENERGY -BASED SOURCELOCALIZATION

It is known that acoustic energy attenuated at a rate that is inversely proportional to the square of the
distance from the source [5]. Based on this knowledge, we may estimate the source location using multiple
energy reading at different, known sensor locations.

[4] show that in certain conditions, acoustic energy decay model in the wireless sensor field can be described
as the following function:

yi(t) = ys(t) + εi(t) = gi

K∑

j=1

Sj(t)
|ρj(t)− ri|2 + εi(t) (1)

For i=1...N. N is the number of sensors used to estimate the source localization, K is the number of sources,
gi andri are the gain factor and location of theith sensor,Sj(t) andρj(t) are respectively, the energy emitted
by the jth source (measured at1 meter from the source) and its location during time intervalt. εi(t) is a
perturbation term that summarizes the net effects of background additive noise and the parameter modelling
error.

The probability distribution ofεi(t) can be modelled well with an independently, identically distributed
Gaussian random variable in practical situations. The mean and variance of eachεi(t), denoted byµi (> 0)
andσ2

i , can be empirically estimated from the time series data sampled at sensori usingCFARdetector [6].

DefineZ =
[ y1−µ1

σ1

y2−µ2
σ2

. . . yN−µN

σN

]Γ
Equation(1) can be simplified as:

Z = GDS+ξ = HS+ξ (2)

Where:

G = diag
[ g1

σ1

g2
σ2

. . . gN

σN

]
(3)
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(4)

S =
[

S1 S2 · · ·SK

]Γ

H = GD

dij = |ρj − ri| is the Euclidean distance between theith sensor and thejth source.
The joint distribution function ofZ is:

f(Z|θ) = (2π)−
N
2 exp

{
−1

2
(Z−HS)T (Z−HS)

}
(5)

The unknown parametersθ in the above function is:

θ =
[

ρT
1 ρT

2 · · · ρT
k S1 S2 · · · Sk

]T

Note that we haveK(p + 1) unknown parameters, where p is the dimension of the location, we need, at
least,K(p + 1) sensors to localize the K source.

ML estimations with projection solution andExpectation Maximizationsolution can be used to solve this
problem [4].
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III. C RAMER-RAO BOUNDS FORENERGY BASED SOURCELOCALIZATION PROBLEM

CRBis a theoretical lower bound of the variance that we can reach for the unbiased estimation. It is useful to
indicate the performance bounds of a particular algorithm.CRBalso facilitates analysis of factors that impact
mostly on the performance of an algorithm.CRB is defined as the inverse of theFisher Matrix:

J = −E

(
∂

∂θ

[
∂

∂θ
ln fθ(Z)

])

For the problem with the joint distribution function described as equation (5),Fisher matrix is:

J =
∂ (DS)T

∂θ
GTG

∂ (DS)
∂θT

(6)

Where

∂DS
∂θT

=
[

∂DS
∂ρT

1

∂DS
∂ρT

2
. . . ∂DS

∂ρT
K

∂DS
∂ST

]
(7)

∂DS
∂ST

= D (8)

Bj =
∂(DS)T

∂ρj

=
[ −2Sj

d3
1j

b1j
−2Sj

d3
2j

b2j . . .
−2Sj

d3
Nj

bNj

]T

(9)

In above equation,bij is the unit vector from sourcej to sensori, which can be expressed as:

bij =
∂dij

∂ρj

=
ρj − ri

dij

Define:

B =
[

B1 B2 · · · Bk

]
(10)

We get theFisher Matrix J as follows:

J =
[

BT

DT

]
GTG

[
B D

]
(11)

The CRB is:

J−1 =
([

BT

DT

]
GTG

[
B D

])−1

(12)

The variance of the unknown parameter estimation is bounded by the CRB, i.e.

var
(
ρ̂ij

) ≥ (
J−1

)
(i−1)p+j,(i−1)p+j

{i = 1 · · · K, j = 1 · · · p}
Wherevar

(
ρ̂ij

)
is the variance of the estimation location forith source atjth coordinate direction.

For single target, the formula is reduced to:

J =
[

J11 J12

J21 J22

]
(13)

Where:

J11 =
N∑

i=1

4S2g2
i

σ2
i d6

i

bibT
i (14)
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JT
21 = J12 = −2S

N∑

i=1

g2
i

σ2
i d5

i

bi (15)

J22 =
N∑

i=1

g2
i

σ2
i d4

i

(16)

J−1 =
[

E−1 FL−1

L−T FT L−1

]
(17)

Where:
E = J11 − 1

J22
J12JT

12

F = −J−1
11 J12

L = J22 − JT
12J

−1
11 J12

IV. SENSORPLACEMENT TO ACHIEVE BETTER SOURCELOCATION ESTIMATION

By Chebyshev’s inequality, we know that the probability of estimation error is less than the ratio of the
variance of that random variable and the square of that estimation error, i.e.

P (| X − E (X) |≥ a) ≤ Var(X)
a2

On the other hand, estimation variance is lower bounded by the CRB. For ML estimation, estimation variance
asymptotically approaches its CRB, i.e., the smaller the CRB, the smaller estimate variance we can achieve
by ML estimation. And therefore, the less probability of the estimation error we might get. For example,
in reality, estimation error less than certain value, saya, is accepted. And we would like the probability of
estimation error bigger thana is asymptotically upper bounded byCRB

a2 . So, we would like to deploy the
sensor in an optimal way such that we can get the smallestCRB.

To simplify the problem, let’s assume the sensor gain and noise variance is same for each sensor. For single
target, we have

E = κ




N∑
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1
d6

i

bibT
i −

1∑N
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1
d4

i

N∑

i=1

1
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1
d5

i

bT
i


 (18)

Where

κ =
4S2g2

σ2

Define:

(ρi − ri) =
[

∆xi

∆yi

]

∆yi =
d2

i

∑N
j=1

∆yj

d6
j∑N

j=1
1
d4

j

(19)

∆xi =
d2

i

∑N
j=1

∆xj

d6
j∑N

j=1
1
d4

j

(20)

LY =
[

∆y1−∆y1
d4
1

∆y2−∆y2
d4
2

· · · ∆yN−∆yN

d4
N

]

LX =
[

∆x1−∆x1
d4
1

∆x2−∆x2
d4
2

· · · ∆xN−∆xN

d4
N

]
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θ = LX ∧ LY

We have:

E = κ

[
e11 e12

e12 e22

]
(21)

Where:
e11 = |LX|2

e12 =< LX,LY >= |LX||LY|cosθ
e22 = |LY|2

Then:

CRB(x̂) = E−1
11 =

1
κ

1
|LX|2(1− cos2θ)

(22)

CRB(ŷ) = E−1
22 =

1
κ

1
|LY|2(1− cos2θ)

(23)

|LX| =
{

N∑

i=1

(∆xi −∆xi)2

(∆xi + ∆yi)
8

}1/2

(24)

|LY| =
{

N∑

i=1

(∆yi −∆yi)2

(∆xi + ∆yi)
8

}1/2

(25)

From equation (22) and equation (23), we know thatCRB(x̂) →∞ or CRB(ŷ) →∞ when either of the
following situation occurs: (i) whenκ → 0, (ii) when |LX| → 0 or |LY| → 0; and (iii) whenθ → 0. (i)
happens only ifS → 0. This will never happen as the localization is triggered only if there is target detection.
(iii) may occur whenLX ∝ LY. Following we will discuss the sensor placement for condition (ii) and (iii).

From (24) and (25), we know that|LX| or |LY| goes to zero if, (1) all sensors are far from the source
since they are inverse to the sixth order of the distance between sensor and the source, or, (2)∆xi − ∆xi

goes to zero for all i.
When there is only one sensor close to the target, we can show that bothLY andLX become zero vector,

i.e., |LX| or |LY| goes to zero.
When there are only two sensors close to the target,

LY =
1
d4
1

[
α4(∆ρy1 − α2∆ρy2) ∆ρy2 − 1

α2 ∆ρy1 0 · · · 0
]

LX =
1
d4
1

[
α4(∆ρx1 − α2∆ρx2) ∆ρx2 − 1

α2 ∆ρx1 0 · · · 0
]

Where we assume that sensor 1 and sensor 2 are close to the target and all other sensors are far away from
the target andα = d1

d2
. Whenα → 1, i.e., target sits between the middle of the nearest two sensors and others

are far from the target,Lx andLy becomes parallel,CRB →∞. Other possible sensor placement that may
causeLX andLY becomes parallel is that all sensors are placed on the same line and the target is also on
that line.

To achieve better performance, we would like to get the smallerCRB. Therefore, we need to maximize
|LY|, |LX| and setθ = 90◦.

When |LY| and |LX| are fixed, we get the minimum CRB ifθ = 90◦, i.e., LX is orthogonal toLY. So,
we need< LX,LY >= 0, i.e.

N∑

i=1

∆xi∆yi

d8
i

− 1∑N
j=1

1
d4

j

N∑

i=1

∆yi

d6
i

N∑

i=1

∆xi

d6
i

= 0 (26)
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Fig. 1. Sensor Deployment, (a) dense sensor close to road, (b) dense sensor, (c) loose sensor located at two side, (d) loose sensor located
at one side

One way to satisfy (26) is to deploy the sensor around the source symmetrically both in X coordinates and
Y coordinates. So, the number of sensor we need is: K=4k, where k is integer.

When target is moving, it is hardly to getLX ⊥ LY at each point in the region. However, we can deploy
the sensor uniformly and densely in the region so that at each point in the region, we can get the approximate
orthogonal condition ofLX andLY. (Suppose the region is big enough, and we don’t consider the boundary
of the region). When we know that the target is on the road, (26) is satisfied when the sensors are deployed
symmetrically at the two side of the road.

Another way to decrease the CRB is to increase|LY| and |LX|. (25) and (24) show that|LY|2 and |LX|2
relates to the inverse of the sixth order ofdi. The smallerdi, the bigger of|LY|2 and |LX|2 we can get. To
get the smallerdi, we can deploy sensors densely in the region and use the sensor which have bigger received
energy to estimate the localization1. When the target is on the road, we can deploy the sensor closely to the
road.

From above analysis, we know that for single target source localization, the optimal sensor deployment that
minimizing CRB is to deploy the sensor uniformly and densely in the region. When the target is constraint
on the road, we can deploy the sensors symmetrically, densely and close to the road.

Simulations have been conducted to verify the theoretical analysis conclusion for the optimal sensor place-
ment that minimizing theCRB. Four different sensor deployment are used to evaluate the CRB. Simulation
results are shown in Fig. 2 with the sensor deployment shown as Fig. 1. The results show that case 1 has
smaller CRB than that of case 2. This is because the sensor is closer to the road for case 1 than that for case
2. Case 3 has bigger CRB than that of case 2 because the sensors are looser for case 3 than that for case 2
with other conditions are same. Case 4 has bigger CRB than that of case 3 because for case 3, sensors are
symmetrically deployed at the both side of the road while in case 4, sensors are deployed at one side. These
simulation results are consistent with our theoretically analysis.

V. M AXIMUM INTERVAL BETWEEN SENSORSWHEN SENSORSARE UNIFORMLY DISTRIBUTED

Now let’s assume sensors are uniformly distributed, we would like to calculate the maximum interval
between sensors when certain fault tolerance (confidence) are required.

Suppose sensors are deployed as Fig. 3, we pick the sensors that have the highest4k received energy to
estimate the target location. Since sensors are symmetric around the target, from equation (19) and equation
(20), we know that∆yi and∆xi are zero for alli. Therefore,LX andLY are reduced to:

LY =
[

∆y1
d4
1

∆y2
d4
2

· · · ∆yN

d4
N

]

LX =
[

∆x1
d4
1

∆x2
d4
2

· · · ∆xN

d4
N

]

1By energy decay model, the sensors that receive the bigger energy are closer to the target, and therefore, have smallerdi
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Fig. 3. Uniformly distributed sensor field

In such case, X coordinate and Y coordinate are equivalent. In addition, for every estimation, the relative
distance matrix from the sensor to the target can be assumed to be same. So,CRB(x) andCRB(y) are equal
and keep constant for every estimation point. We would like

E[P (|ρ̂x − E (ρx) | ≥ a)] ≤ E[
Var(ρx)

a2
]

=
CRB(x)

a2
≤ (1− ηα) (27)

Whereηα is the confidence level. Insert equation (22) into (27) and note thatθ is 90◦ for the uniformly
distributed sensors, we have:

|LX|2 ≥ 1
κ(1− ηα)a2

=
1

4g2(1− ηα)a2SNR
(28)

Where:

|LX|2 =
4k∑

i=1

(∆xi)2

(∆xi + ∆yi)
8 (29)

SNR =
S2

σ2
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Fig. 4. relation between maximum sensor interval and SNR, the confidence level

Define:

∆x′i =
∆xi

c

∆y′i =
∆yi

c

Then:
L′X =

[
∆x′1
d′1

4
∆x′2
d′2

4 · · · ∆x′N
d′

N
4

]

|L′X|2 =
N∑

i=1

(∆x′i)
2

(∆x′i + ∆y′i)
8 = LXc6

where c is the maximum interval between the neighboring sensors. Then:

c ≤ {4g2(1− ηα)a2|L′X|2SNR}1/6 (30)

If we choose k=4, i.e., we use 16 sensors denoted as Fig. 3 to estimate the target, then

{L′X}1∼4 = {L′X}5∼8 = {L′X}9∼12 = {L′X}13∼16

=
[ −1.5 −0.5 0.5 1.5

]

Fig. 4 and Fig. 5 show the relation of maximum sensor interval,SNR, estimation error bound (a) and the
confidence level (ηα) in the uniformly distributed sensor network. It shows that maximum sensor interval is
larger when SNR in the sensor network is larger, i.e., if the SNR is larger, we can deploy the sensor looser
while we can still satisfy the accepted estimation error bound (a) under certain confidence levelηα. We also
notice that for fixedSNRand accepted estimation error bounda, confidence level increase a lot when we
deploy the sensor a little bit denser. This is because the sixth order relationship between the confidence level
and maximum sensor interval as denoted in equation (30). For example, fix a andSNR, then

1−ηα1
1−ηα2

= { c1
c2
}6,

fix ηα and SNR, then a1
a2

= { c1
c2
}3. Therefore, performance enhancement over price addition (we need more

sensors for dense sensor field) is high.

VI. CONCLUSION

CRBhas been derived for energy based source localization problem. Based on theCRBanalysis, we conclude
that the optimal sensor deployment for better performance of energy based acoustic source localization is:

1) Use dense sensor
2) Uniformly distributed in the region

When the target is constraint on the road, we can deploy the sensor symmetrical and densely and close to
the road. The limit of such case is to deploy the sensor uniformly and densely on the road. However, such



9

10 15 20 25 30 35 40
4

6

8

10

12

14

16

18

20

SNR (db)

in
te

rv
al

 b
et

w
ee

n 
ea

ch
 s

en
so

rs
 (

m
et

er
),

 s
en

so
rs

 a
re

 u
ni

fo
rm

ly
 d

ep
lo

ye
d

a=10, eta=0.9
a=20, eta=0.9
a=30, eta=0.9

Fig. 5. relation between maximum sensor interval and SNR, the estimation error bounds under certain confidence level

situation should be avoided as it meets the condition that all sensors are on the line with the target, which
will abrupt the CRB.

In general, we need at least two sensors close to the target to avoid the infinite ofCRB. When only two
sensors are close to the target, theCRB can also goes to infinite when the target sits on the middle of the
two closest sensors ( Assume others are far away from the target). To avoid this possibility, we need three
sensors close to the target. Deploying sensors on the straight line should also be avoided as it can cause the
CRBgoes to infinite when the source is on that line.

Maximum sensor interval is calculated to satisfy the estimation error bound under certain confidence level
when sensors are uniformly distributed. Sensors can be deployed looser in highSNRenvironment. Overall, we
proved that deploying the sensors densely can get much high performance enhancement over price addition.
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