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Abstract

The study of sensor networks invites a fresh look at well-studied problems to account for
distributed communication and computational network constraints. In this paper, we study dis-
tributed signal processing techniques for classification of objects assuming knowledge of sen-
sor measurement statistics. Our approach is based on modeling the spatio-temporal signal field
generated by an object as a bandlimited stationary ergodic Gaussian field. The model provides
a simple abstraction of correlation between node measurements: it partitions the network into
disjoint spatial coherence regions over which the signal remains strongly correlated, whereas
the signal in distinct coherence regions is approximately uncorrelated. The size of coherence
regions is determined by spatial signal bandwidths. We show that this partitioning imposes a
structure on optimal distributed classification algorithms that is naturally suited to the commu-
nication constraints of the network: local high-bandwidth exchange of feature vectors within
each coherence region to improve the measurement SNR, and global low-bandwidth exchange
of local decisions across coherence regions to stabilize the inherent variability in the signal.
We analyze classifier performance for both hard and soft decision fusion across coherence re-
gions assuming noise-free as well as noisy communication links between nodes. Under mild
conditions, the probability of error of all classification schemes (soft, hard, noisy) decays ex-
ponentially to zero with the number of independent node measurements — the error exponent
depends on both the measurement and communication SNRs and decreases from soft to hard
to noisy fusion. Numerical results based on real data illustrate the remarkable advantage of
multiple sensor measurements in decision making.

1 Introduction

Wireless sensor networks are an emerging technology for monitoring the physical world with a
densely distributed network of wireless nodes (see, e.g., [1]). Each node has limited communi-

cation and computation ability and can sense the environment in a variety of modalities, such as
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acoustic, seismic, and infra red [1, 2, 3]. A wide variety of applications are being envisioned
for sensor networks, including disaster relief, border monitoring, condition-based machine mon-
itoring, and surveillance in battlefield scenarios. Detection and classification of objects moving
through the sensor field is an important task in many applications. Exchange of sensor information
between different nodes in the vicinity of the object is necessary for reliable execution of such
tasks due to a variety of reasons, including limited (local) information gathered by each node, vari-
ability in operating conditions, and node failure. Indeed, development of theory and methods for
collaborative signal processing (CSP) of the data collected by different nodes is a key research area

for realizing the promise of sensor networks.

Some form of region-based processing is attractive in sensor networks in order to facilitate CSP
between nodes and also for efficient routing of information [3]. Typically, the nodes in the network
are partitioned into a number of regions and a manager node is designated within each region to
facilitate CSP between the nodes in the region and for communication of information from one
region to another. The CSP algorithms have to be developed under the constraints imposed by the
limited communication and computational abilities of the nodes as well as their finite battery life.
To this end, a key goal of CSP algorithms is to exchange the least amount of data between nodes
to attain a desired level of performance. In this paper, with the above goal in mind, we investigate
CSP techniques for combining the data collected by different nodes for single-target classification

within a region of interest.

There are two main forms of information exchange between nodes dictated by the statistics of
measured signals. If two nodes yield correlated measurements, data fusion is needed for optimal
performance — exchange of (low-dimensional) feature vectors that yield sufficient information for
the desired task. For example, estimates of signal energy at different frequencies (Fourier/spectral
feature vectors) may be used for classification. On the other hand, if two nodes yield statistically
independent measurements, decision fusion is sufficient — exchange of soft or hard decisions com-
puted at the two nodes. In general, the measurements at different nodes would exhibit a mixture of
correlated and independent components and would require a combination of data and decision fu-
sion between nodes. In the context of sensor networks, decision fusion is clearly the more attractive

choice. First, it imposes a significantly lower communication burden on the network, compared to



data fusion, since only scalars are communicated to the manager node. Second, it imposes a lower
computational burden compared to data fusion since lower dimensional data has to be jointly pro-
cessed at the manager node. Third, a classifier based on decision fusion requires much smaller

amount of data for training since fewer parameters characterize the classifier.

The statistics of node measurements are determined by the signal field in space and time gener-
ated by the underlying object of interest. The signal field may be sensed by the nodes in different
modalities. In the next section we present a basic model for the signal field that yields a natural
approximate characterization of space-time signal statistics. In particular, the model imposes a
universal structure on all CSP algorithms for decision making in which costly* data fusion is con-
fined to local spatial coherence regions (SCR’s) in which the signal is strongly correlated, and only
cheaper decision fusion is needed across different SCR’s in which the signal is nearly independent.

This model forms the basis of the distributed classification schemes studied in this paper.

In any network query involving an object (such as a vehicle), the first task is typically to de-
tect the presence of the object in a region of interest. Classification of the object follows object
detection. Section 3 discusses optimal CSP algorithms for classification that assume noise-free
communication links from different SCR’s to the manager node. Both soft and hard decision fu-
sion is discussed. In Section 4, we discuss the more practical hard decision fusion over noisy
communication links. We show that under mild conditions, all fusion schemes (soft, hard, noisy)
exhibit exponentially vanishing probability of misclassification with the number of independent
measurements from different SCR’s — the error exponent decreases from soft to hard to noisy
fusion. In Section 5 we present numerical results based on real measurement data to illustrate the
potential performance gains due to multiple node measurements. In particular, our results demon-
strate a remarkable practical advantage of multiple independent node measurements: a relatively
moderate number of fairly unreliable local decisions can be fused over noisy communication links
to produce acceptably reliable final decisions. Section 6 presents a discussion of the results as well

pointers for future work.
1This relates to network cost in terms of bandwidth and power expenditure.




2 A Signal Model for Sensor M easurements
2.1 Underlying Assumptions on Signal Statistics

Each signal source corresponds to a space-time signal s(z, y,t) as a function of the spatial coordi-
nates (x,y) and time ¢. The network nodes sample s(x, y, ) in space and time. Consider a spatial
region of interest, R = D, x D, = [-D./2,D./2] x [-D,/2, D, /2] associated with a network
query regarding classification of a single source. We assume that the space-time signal is a zero-
mean complex circular Gaussian stationary field in the spatial and temporal dimensions.? While
practical sources will exhibit non-stationarities, this is a reasonable assumption over the space-
time region of the query. The assumption of Gaussianity is equivalent to basing CSP algorithms
on second-order statistics which is a reasonable and tractable assumption for initial investigations.
Specifically, s(z,y,t) is represented as
Bz/2 By/2 B:/2
(z,y,t / / / 1/95,z/y,f)6]27”'“‘“'eﬂ”yyeﬂ“ﬂdz/zdz/ydf @
B./2JB,/2 Bi/2

where ¢(v,, v, f) denotes the underlying spectral representation® which satisfies

El¢(ve, vy, [)87 (Ve vy, [1)] = ®(ve, vy, [)6(ve — v,)8(vy — v,)0(f = f) )

for some ®(v,, v, f) > 0 that represents the power spectral density (PSD) of the process. The

signal correlation function is related to the PSD via a 3D Fourier transform

rs(Az, Ay, At) = E[s(z 4+ Az, y+ Ay, t + At)s*(z,y,1)]

Bs/2 By/2 Bt/2 4
_ / / / V1-7 vy, Vt)e]%r(umAz—l—uy Ay+ fAL) dl/wdl/ydf (3)
B./2 JBy/2 B:/2

and both characterize the statistics of the s(z, y, t).

2.2 Approximate Signal Modeling Via Spatial Coherence Regions

To enable efficient CSP, we propose an approximate signal model, based on spatial coherence
regions (SCR’s) illustrated in Fig. 1, that captures the scales of signal variation in the spatial

dimensions. To a first approximation, the spatial scales of variation in s(x, y, t) are determined by

2We assume a complex signal field for generality; e.g., it would be applicable for signal sources created by passband
transducers that send independent information in the in-phase and quadrature components.

3Strictly speaking, (1) needs to be a Stieltjes integral with respect to a random measure d¢(v,, vy, f), where
&(va, vy, f) is an orthogonal increment process, but we use the above functional definition for simplicity.
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the spatial bandwidths B, and B, — the larger the bandwidths, the faster the signal variation in the
corresponding dimension. The spatial bandwidth B, induces a coherence distance, D, = 1/B,,
over which the signal remains strongly correlated in the = spatial dimension. Similarly, D, =
1/ B, denotes the coherence distance in the y dimension. Thus, as illustrated in Fig. 1, we can
partition the query region R into disjoint SCR’s, { R ;; }, of size D, x D., over which the signal
remains strongly correlated (approximately constant). On the other hand, it can be shown that the
signal is approximately uncorrelated in distinct SCR’s [4]. The uniform size of SCR’s follows

from the stationarity assumption.
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Figure 1: A schematic illustrating the notion of spatial coherence regions (SCR’s) over which s(z,y,t) remains
strongly correlated (approximately constant) as a function of (x,y). (a) The overall region of interest of size Dy x D,
is partitioned into SCR’s of size D, , x D, , where D. , = 1/B, and D. ,, = 1/ B, denote the coherence distances
in z and y dimensions.

Specifically, we use a piece-wise constant (PWC) approximation of the stationary signal com-
mensurate with the SCR’s

t

N,
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where Ix(z) denotes the indicator function of (—X/2, X/2], N, = D,/D., = 2N, + 1, and
N, = D,/D., = 2N, + 1. The PWC signal s,..(z,y,t) is the projection of s(z,y,t) onto
the N, = N, N,-dimensional spatial subspace spanned by the orthogonal spatial basis functions
{uij(z,y) = Ip.,(x —1D..)Ip,,(y —7D.,)}. The N, temporal processes {s;;(¢)} constitute the

spatial signal average in the corresponding SCR’s
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Example: Temporal point sources. In general, the spatial and temporal signal characteristics
can be arbitrary. However, for this important class of signal sources they are intimately related.
Such sources are characterized by a underlying temporal signal s,(¢) with bandwidth B; — the
space-time signal is determined by s,(¢) via physical signal propagation in space. For example,
acoustic signals emitted by vehicles may be modeled in this fashion. For isotropic spatial propa-
gation, s(z,y,t) = s(r,t) = s,(t — r/v) where r = /2% + y2 and v is the speed of propagation.
Thus, the signal is stationary along radial lines. It follows that B, = B;/v, where B, is the band-
width in the radial spatial dimension. The true SCR’s are concentric bands around the source and
the radial coherence distance D, is given by D, = 1/B, = v/B,. For example, for B, = 500Hz,
D, = 0.66m whereas for B, = 20Hz, D, = 17m. Choosing D., = D., = D, for rectangular

SCR’s in Fig. 1 is a natural choice.

Spatial degrees of freedom. It can be shown that s,,.(z,y,t) preserves the most important
statistical information about s(x, y. ¢): spatial degrees of freedom over R. A simple intuitive way
to see this is as follows. The sampling theorem states that all spatial information about s(z,y,¢) in
contained in the samples s[, j; t] = s(¢/ Bz, 7/ By,t). The number of samples in the query region
Requals (D, B;)(DyB,) = (Dy/D.2)(Dy/D.,) = N, which is precisely equal to the number
of coefficients in s,,.(t) in (4). In fact, at any time ¢, s[z, 7; ¢] corresponds to the signal sample at
the center of the (7, 7)-th SCR, whereas the PWC model coefficient s;;(¢) in (5) corresponds to the
signal average in the SCR. It can be shown that the temporal processes s;;(¢)’s corresponding to
different SCR’ss are approximately uncorrelated [4]. Thus, there are approximately N, = N, N,

independent spatial degrees of freedom in s(z,y,¢) over R which are preserved by s,,..(z,y,1).*

Assumptions on Sensor Measurements. Based on the above discussion, we make two assump-

tions about spatial signal variation to facilitate insight and analysis:

1. s(x,y,t) is perfectly correlated in each SCR. That is, for any ¢, the signal in the (z, j)-th
SCR is constant as a function of (z,y); s(x,y,t) = s4(t), (z,y) € Reyj.

2. the temporal processes {s;;(¢)} in different SCR’s are statistically independent.

4We note that similar approximations are widely used in the analysis of randomly time-varying communication
channels in the guise of block fading models (see, e.g.,[5]).



In the region R = D, x D,, there are G = NN, independent SCR’s. From now on, we will label
the SCR’s by a single index: R.x, k =1,--- ,G. We assume that there are n nodes in each SCR,

resulting in a total of A' = G'ng nodes in R. We model time signal sensed by the :-th node as
zi(t) = si(t) +ni(t) , i=1,---, K =Gng (6)

where ny(¢) denotes zero-mean complex circular white Gaussian noise process. We assume that
the {n,(¢)} at different nodes are independent identically distributed (i.i.d.). The signal at each
node is sampled at a sufficiently rate in disjoint blocks of N samples. Let {x;,, : = 1,--- K}

denote the N-dimensional measurement vectors at the A nodes.

At the sensing level, there are two sources of error in decision making: i) the additive noise, and
i) the statistical variability in the source signal. The notion of SCR’s illustrated in Fig. 1 imposes
a structure on optimal classifiers that is naturally suited to network communication constraints and

also enables mitigation of both sources of error:

e First, the ng measurements in each SCR are averaged to increase the effective measurement
signal-to-noise-ratio (SNR) by a factor of n. This high-bandwidth data fusion is limited to
within SCR’s.

e Second, local independent decisions from different SCR’s are appropriately combined to

reduce the statistical variability in the final decision.

For the remainder of the paper we assume that the measurements {«,} in each SCR are averaged
to yield a single /V-dimensional vector z,, for each SCR
1
zk:—Zazi:sk—l—nk,k:l,---,G. (7)
ng .
ZERc,k
If the original noise variance is o2, the variance of the averaged noise becomes o2 /ng. Let s ~
CN(p,X) denote a complex circular Gaussian vector with mean g = E[s] and covariance matrix
3 = E[ss'], where (-)¥ denotes Hermitian transpose. Then s, ~ CA/(0,X) for some ¥ and

n; ~ CN (0,021 /n¢g) where I denotes the identity matrix.

n

Feature Selection. An imporant issue in classification is: what kind of measurements {«;}

should be collected? This is the called feature selection [6]. Essentially, the raw time series data
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collected in each block at each node is processed to extract a relevant feature vector that best
facilitates discrimination between classes. Feature selection is an important research topic in its
own right but we will not discuss it here; we refer the reader to [6] for a discussion. In numerical
results, we will assume a particular type of feature vectors {x,} — spectral feature vectors — that
can be obtained by computing a Fourier transform of the raw data. This is a natural consequence
of our signal model in which the target signals are modeled as a stationary process. An important
consequence of Fourier features is that the different components of s, correspond to different
frequencies and are approximately uncorrelated. The power in each component is proportional to
a sample of the temporal PSD associated with the target class. Furthermore, noise statistics remain
unchanged since Fourier transformation does not change the statistics of white noise. Thus, in
numerical results we will explicitly substitute ¥; = A;, where A; is a diagonal matrix whose
diagonal entries are proportional to PSD samples for class j. Equivalently, if we consider 3 ; to be
the (Toeplitz) covariance matrix of raw signal, A; = UX;U denotes the matrix of eigenvalues

of X; where U is the discrete Fourier transform (DFT) matrix.®

3 Decision Fusion with Noise-Free Communication Links

Suppose that we are interested in classifying a single target/object in a region R. In a practical
scenario, a query for target classification will usually be preceded by a query for target detection.
Target detection can be accomplished reliably with distributed energy detectors (see, e.g. [3]). We
assume that a target has already been detected. Furthermore, we assume that the target belongs to
one of M possible classes. Mathematically, the classification problem can be stated as an M-ary

hypothesis testing problem
H]‘ . zk:sk—l—nk,k:l,---,G, ,jzl,"-,M (8)

where {n;} are i.i.d. CN(0,021/n¢) and {s;} are i.i.d. CNV(0,X;) under hypothesis H;. Thus,
under H;, {z;} are ii.d. CA(0,%;) where £; = X, + 02I/ng. All information about the
targets is contained in the covariance matrices {X;}. In practice, {3;} have to be estimated from

available training data. We assume knowledge of tr(3;) and that tr(3;) (signal energy)® is the

51t is well-known that the DFT matrix diagonalizes Toeplitz matrices in the limit of large dimension [7].
Str(-) denotes the trace of a matrix (sum of the diagonal entries).
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same for all 5. Based on the measurement vectors {z;} from the G SCR’s, the manager node has
to decide which one of the M classes does the target belong to. In this section, we discuss CSP
algorithms for classification based on fusion of both soft and hard decisions, assuming a noise-
free communication link from each SCR to the manager node. The noise-free decision fusion

architecture is illustrated in Fig. 2(a).

Z Z, Z,
RC,l C2 C.G
f(z)\ f(z, f(z)
Manager Node Manager Node
. ~—1
Figure 2: (a) Noise-free decision fusion. For soft decisions, f(zx) = {z/ 3, zr,j = 1,---, M}, whereas for

hard decisions f(zy) = ur = argmax; p;(zx). (b) Noisy hard decision fusion.

3.1 Soft Decision Fusion
For simplicity we assume that different classes are equally likely. Then, the optimal classifier
chooses the class with the largest likelihood [6, 5, 8]
C(z1, -+ ,2g) =arg max p;(z1, - ,2¢) 9
j=1,- M
where p;(z1,---,z¢) is the probability density function (pdf) of the measurements under H;.
Since {z,} are i.i.d. CA'(0,X;) under H,

1 g1
er ) 2k (10)
NS

pj(zla"' )y % Hpj Zk y Pj zk)

where |§]j| = [12, (A\;[n] + 02 /ng) denotes the determinant of 2 (product of eigenvalues). Itis

n=1

often convenient to work with the negative log-likelihood functions

C(z1,+,2g) = arg . min li(z1,-+ ,26) (11)
=1, M
G
log pi(z1, -, 2 1
lj(zla"' 7ZG) - = gp]( 1G G) - _leogpj(zk)' (12)



Ignoring constants that do not depend on the class, the negative log-likelihood function for H;

takes the form

G
= 1 ~—1
Lz, 7ZG):10g|zj|+aszjzj 2. (13)
k=1
Note that implementation of the optimal classifier requires that the £-th SCR communicates the
local log-likehood functions for the M hypotheses, {zkHzN]j_lz , 7 =1,---, M}, to the manager
node. The classifier at the manager node then computes /; in (13) for j = 1,--- , M and declares

that the target belongs to the class with the smallest /;.
3.1.1 Performance of Soft Decision Fusion

We quantify classifier performance in terms of the average probability of error
1 M
P(G) =+ mz::l Por(G) , Pom(G) = P(l; <L, for some j # m |H,,) (14)

where P. .. () is the conditional error probability under H,,. Computing F. ,, is complicated in

general but we can bound it using the union bound [5]

M
Pom(G) < > Pl < Ly|Hy), (15)

J=1,5#m

Note that P.(G) = 1 — PC(G) where PC denotes the average probability of correct classification
1 M

PO(G) = - Y PCL(G) , PCL(G) = P(l,, <1, forall j # m|H,) (16)
m=1

and PC,, denotes the conditional probability of correct classification under H,,. Each pairwise
error probability (PEP) on the right hand side of (15) depends on a decision statistic that is a
weighted sum of NG x2 random variables [8]. The pdf and distribution function of the statistic

can be computed in closed-form but take on tedious expressions [5].

We can obtain a reasonably tight upperbound on P, via Chernoff bounds for the pairwise hypoth-
esis tests. Define the average symmetric PEP, PEP;,,, (), for the binary test between H; and H,,

with G measurements, as

10



Then (14) can be written as

M M M
1 2
PAG) S 257 30 Pl < lulla) = - 37 3" PEP () (18)
m=1 j=1,j#m m=1 j<m

Chernoff bounding techniques can be used to obtain tight bounds for the PEP. We state some well-
known results (see, e.g., [5, 9]) in the context of our set-up. Let E,,,[-] denote the expectation under

H,.

Proposition 1 (Chernoff Bounds) For 0 < 4 < 1, define

f1im (6) = log B, [(ifﬁf%%)g <0 (19)
Then, forany0 <4 < landforall G > 1
PEPﬂxGﬁfgéemexy (20)
The tightest error exponent (Chernoff information) is given by
D3, = — min 1,,(6) (21)

0<6<1

and a simpler non-trivial exponent is provided by the Bhattacharya bound
Dy = —tim(1/2) > 0. (22)
Thus, for all G > 1 we have

* 1 *
PEP;,.(G) < e Pint < §e_DBJmG. (23)

In the case of noise-free soft decision fusion, it is relatively straightforward to compute /., (6)

(we omit the details here):

i (8) = 8log (1—0)1+0%,5, (24)

~ ~—1
5,5~ log

where the above expression holds for all § > 0 for which (1 — 6)I + Himf]j_l is positive definite.

The minimization in (21) can be easily performed numerically using (24).

11



Substituting PEP ;.. (G)) bounds from (23) into (18) we get two corresponding bounds for P.(G')

1 M 1 M
G E E -Dx G E E -D3% imG
Pe( ) S m=1 j<m o § m=1 j<m ) . ‘ (25)

Thus all PEP;,,,’s decay exponentially to zero with (&, and thus so does P.((). In particular, the de-

cay of P, (&) will be dominated by the smallest (worst) error exponent. Let D%, , . = min{D5p ;. }
and Dy, = min{ D7} be the smallest pairwise Bhattacharya and Chernoff exponents. Using the
dominant exponents in (25) we get
M cx .
P@(G) § %Q_DminG § —Qe_DB,mi'nG (26)

where CM = % is the number of pairwise hypothesis tests.
Asymptotic Performance as G — oo. Note from (12) that by the law of large numbers, under

H,,, we have

dim Uiz, 26) = —Enllogpi(Z)] = D(pnllp;) + hm(Z) (27)

where D(p.,||p;) is the Kullback-Leibler (K-L) distance between the pdf’s p; and p,, and h,,(Z)
is the differential entropy of Z under H,, [10]

D(pullps) = Fu log(pn(2)/p(2))] = log (1Z1/18]) +tr (2], 1) (28)
h(Z) = —Fpllogp(2)] = log ((me)[Sn]) (29)

An important property of K-L distance is that D(p,,||p;) > 0 with equality if and only if p,, = p;,
in which case there is no way to distinguish between the two classes. Thus, from (27) we conclude
that under H,,, [, will always give the smallest value and thus lead to the correct decision as
G — oo as long as D(p;||p,.) > 0 forall j # m. From Proposition 1, we know that P, () decays

to zero exponentially. Thus, we have the following result.

Proposition 2 If all pairwise K-L distances are strictly non-negative, that is
D(pmllpj) >0 Vj,m, j#m (30)

then P.((') decays exponentially to zero with ¢

lim 08 L) e (31)
G—oo
where D, = min{ D}, } is the smallest pairwise Chernoff information defined in (21).

12



Note that (31) directly follows from (25). The condition in the above result would be satisfied in
general except in the limit of very poor SNR. The effect of poor SNR is to reduce the values of the

K-L distances.

3.2 Hard Decison Fusion

In soft decision fusion, the £-th SCR sends M log-likelihood values {z{flj_lzk cg=1,- M},
computed from its local measurement z;, to the manager node. While exchange of real-valued
likelihoods puts much less communication burden on the network as compared to data fusion in
which the feature vectors { z, } are communicated to the manager node, it is attractive to reduce the
communication burden even further. One way is to quantize the M likelihood values from different
SCR’s with sufficient number of bits. The number of bits required for accurate communication can
be estimated from the differential entropy of the log-likelihoods [10, 8]. Another natural quantiza-
tion strategy is to compute local hard decisions in each SCR based on the local measurement z.
In this section we discuss this hard decision fusion approach, assuming noise-free communication

links from the SCR’s to the manager node.

We assume that the locally optimal (based on the local measurement z ;) hard decision is made
inin k-th SCR

uk:arg‘maXij(zk) , k=1,--- ,G. (32)

J=1,

Note that w is a discrete random variable with M possible values. Furthermore, since all {z}
are i.i.d., so are {u;}. Let {p,.[j] : 7 = 1,---, M} denote the M values of the pmf of the hard
decision variable U/ under H,,. The pmf’s of U/ under all hypotheses are characterized by the

following probabilities
pmlj] = P(U = j|Hp) = P (pj(zx) 2 pi(zx) forall 1 # 5 [Hy)  jym=1,--- M. (33)

The hard decisions {u;} from all SCR’s are communicated via noise-free links to the manager

13



node which makes the final optimal” decision

Ohard(ula T, uG) = arg ]_I{laX P [uh ) uG] (34)
Pj [ulv Ty uG] = Hp] [uk] 3 (35)
k=1

which can also be expressed in terms of negative log-likelihoods as

Chard(uh e 7uG) = arg . mln l [ulv 7uG] (36)
=1, M
1 1
o) = —glogpin, el =~ Y legplud . @

3.2.1 Performance of Hard Decision Fusion

While the exact calculation of P. is difficult, it can be bounded via PEP’s analogous to soft decision

fusion. In particular, in this case g ;m rara(6) is given by

mwm@z@&wwwmfl%zmheh (38)

which can be manipulated numerically to compute the pairwise Chernoff and Bhattacharya expo-
nents: D7, ;.. = — MiNggo1] fjm hard(0) AN D 500 = —jm hara(1/2). Then the PEP’s and
P. 1qra Can be bounded analogous to (23), (25) and (26).

For a given measurement SNR and (&, we expect the PEP’s to be higher compared to soft decision
fusion due to local hard decisions. In fact, the pmf’s of hard decision in (33) are based on decision
statistics that are weighted sums of N y2 random variables, compared to NG 3 in soft decision

fusion, thereby resulting in less reliable hard decisions [8].

Asymptotic Performance as G — oc. Despite the fact that the local hard decisions can be quite
unreliable, the final hard decision fusion classifier can still attain perfect performance as G — oc.

Note from (37) that because of law of large numbers, under H,, we have

lim Lluy, - ug] = —Enflog p;[U]] = D(pmllp;) + Hum(U) (39)

G—o0

’Optimal, given the the hard decisions {uy}.
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where D(p,.||p;) is the K-L distance between the pmf’s p,, and p; and H,,(U) is the entropy of
the hard decision under H,, [10]

D(pmlp;) = me[i]log(pm[i]/pj[i]) (40)
H,(U) = —me[i]logpm[i]- (41)

Thus, we see from (39) that in the limit of large G we will attain perfect classification performance
as long as D(p.,||p;) > 0 forall 5 # m. Furthermore, as in soft decision fusion, P. ;...(G) decays

exponentially with G.

Proposition 3 If all pairwise K-L distances between the pmf’s in (33) are strictly non-negative,

then P. ».-4(G) decays exponentially to zero with &

. 10g Pe,hard(G) *
C%l—{{)lo -~ § _Dmin,hard (42)
where D} . ,.q = min{ D7, .} is the smallest pairwise Chernoff information for hard decision

fusion.

Note that for a given measurement SNR, the error exponent for hard decision fusion will be
smaller compared to soft decision fusion, since the pairwise K-L distances between the pmf’s in

hard decision fusion will be smaller than those between the pdf’s in soft decision fusion.

4 Decision Fusion with Noisy Communication Links

In this section, we discuss decision fusion from different SCR’s using noisy communication links,
as illustrated in Fig. 2(b). Given the competitive performance of noise-free hard decision fusion

compared to soft decision fusion, we focus on noisy fusion of hard decisions.®

We assume that each SCR has a dedicated communication link to the manager node.® Each SCR

sends an amplified version of its hard decision u in (32) over a noisy link

yp=aup +wg , k=1,---,G (43)

8Noisy analog fusion of soft decisions is also an attractive choice, but we do not discuss it here due to lack of space.
9Note that this requires large bandwidth or large latency at the manager node in the limit of large G.
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where y; denotes the received signal at the manager node from the k-th SCR and {w} are i.i.d
N(0,02) (real Gaussian noise). Note that since {u;} are i.i.d, so are {y;}. Without loss of gen-
erality, assume that M is odd and define M = (M — 1)/2. We assume that each SCR sends a
symmetrized version of its hard decision to use minimum power: u;, € {—M,--- , M}.2° Given

this simple communication scheme, the optimal classifier at the manager node takes the form

Cuonl®) = AEmin () ()
1 1 &
ljmoisy(y) = _alogp,noisy(y) = _azlogpj,noisy(yk) (45)
k=1
1 M :
Pinoisy(y) = Y et g i), (46)

\/2mo? =~

The exact calculation of P, ,;,, is most complicated in this case; however, it can be bounded via
Bhattacharya or Chernoff bounds for the PEP’s as discussed in previous sections. In particular, in

this case 1, n0isy (9) takes the form

,ujm,noisy(e) = log Em [pg,noisy(Y)/pfn,noisy(y)] (47)

which can be computed numerically. Most importantly, for sufficiently large measurement and
communication SNR’s, we again expect exponentially vanishing P. ,,.is, since from (46) we have

under H,,

lim lj,noisy(y) - _Em [logp],nozsy(Y)] - D(pm,noisy Hpj,noisy) + hm(Y) (48)

G—oo

Thus, following the lines in noise-free fusion, we immediately have the following result.

Proposition 4 If all pairwise K-L distances between noisy pdf’s in (46) are strictly non-negative

then P. ,..is, decays exponentially to zero as G — oo

. Pe noisy
Gll—{{)lo S _D:nin,noisy (49)
where D; ;. i, = min{ D%, .1 is the smallest pairwise Chernoff information for noisy hard

decision fusion.

We expect the K-L distances in this case to be smaller than those for noise-free hard decision

fusion. In particular, they depend on both the measurement and communication SNR’s.

1ONote that this is not necessarily the optimal symbol assignment from the viewpoint of final decision.
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5 Numerical Results Based on Real Data

0.25

-©- AAV
— DW
—*- HMMWV

0.2r

0.15f

PSD ESTIMATE

0.1r

0.05f

Figure 3: Covariance matrix eigenvalues (PSD estimates) based on acoustic measurements for three vehicles: AAV,
DW, and HMMWYV.

In this section, we present numerical results to illustrate the performance of the three classifiers
C, Charqa and C,;5, @s a function of & for different measurement and communication SNRs which

are defined(in dB) as

SNRyeas = 10log,o(tr(X;)/Noy) , SNReomm = 101ogyg (Zm)?p[i]/ag) (50)

where p[i] = P(U =1) = >, pn[i]/M and recall that we assume constant tr(X;) (signal energy)
for all classes. Our results are based on real measurements collected during the DARPA SensIT
program and correspond to classifying a vehicle from M = 3 classes based on acoustic signals
collected by microphones [3]. The three vehicle classes are: Amphibious Assault \ehicle (AAV),
Dragon Wagon (DW) and Humvee (HMMWYV). PSD values at N = 25 frequencies (within a
2kHz bandwidth) were estimated using data collected at multiple nodes. The PSD estimates are
plotted in Fig. 3. The PSD values define the diagonal covariance matrices (in the Fourier domain)
3¥; = A;. Under H;, the N = 25-dimensional averaged measurement vector z; in the k-th SCR

was simulated as

2 =A v tny, k=1, G (51)

J

where {v;} are i.i.d CN(0,I) and {n;} are i.i.d. CN(0,021I). P. and P. ... Were estimated
via Monte Carlo simulation using 7000 independent sets of G measurements for each hypothe-

sis. The pmf’s {p,,[7]} for hard decisions were also estimated via this Monte Carlo simulation.
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The measurements for noisy hard decision fusion were simulated using (43) and the pmf’s for
hard decisions. P. ,.is, Was estimated using 10000 independent sets of measurement realizations.
The simulations were done for four values for SNR,..., = —4,0,4,10 dB and three values for
SNRomm = 0,5, 10 dB.

[ M easurement SNR=-4dB ][ M easur ement SNR=0dB ]
m[j AAV DW HMMWV m[j AAV DW HMMWV
AAV 0 0.4665 0.2584 AAV 0 13777 0.6478

0 0.2773 0.1360 0 0.8013 0.3520
0 0.0714 0.0706 0 0.1728 0.1548
0 0.1707 0.1201 0 0.4281 0.2441
0 0.2716 0.1583 0 0.7212 0.3231
DW 0.5159 0 0.1649 DW 1.4559 0 0.4922
0.2829 0 0.0827 0.7998 0 0.2819
0.0667 0 0.0098 0.1442 0 0.0288
0.1631 0 0.0319 0.3927 0 0.1129
0.2737 0 0.0608 0.7273 0 0.2247
HMMWV 0.2711 0.1607 0 HMMWV 0.6880 0.5114 0
0.1316 0.0794 0 0.3375 0.2725 0
0.0739 0.0090 0 0.1509 0.0328 0
0.1182 0.0325 0 0.2403 0.1161 0
0.1520 0.0642 0 0.3073 0.2139 0
(@) )

[ M easur ement SNR=4dB ][ M easur ement SNR=10dB ]
m[j AAV DW HMMWV m[j AAV DW HMMWV
AAV 0 3.3380 1.2145 AAV 0 8.6186 2.0692

0 1.6520 0.6680 0 3.3931 1.0723
0 0.3258 0.3630 0 0.4604 0.6317
0 0.8727 0.5644 0 1.4600 0.9385
0 1.4901 0.6556 0 2.8608 1.0804
DW 3.1455 0 1.1893 DW 6.4357 0 2.9212
1.6422 0 0.7002 3.2744 0 1.7447
0.2690 0 0.0895 0.3537 0 0.2256
0.7238 0 0.3139 1.1475 0 0.7527
1.4654 0 0.6322 2.7645 0 1.4739
HMMWV 12971 14010 0 HMMWV 21531 4.2559 0
0.6482 0.6921 0 1.0546 1.8374 0
0.3707 0.0953 0 0.6383 0.2769 0
0.5498 0.3162 0 0.9205 0.8524 0
0.6502 0.5981 0 1.0371 1.6038 0
@) @

Table 1: Pairwise K-L distances for the 3 vehicles classes for soft, hard and noisy hard decision fusion at four
different SNR,,,eqs- The first entry in each cell is the K-L distance for soft, the second for hard, and the remaining
three for noisy hard decision fusion at SNR.comm = 0,5, 10 dB respectively. (a2) SNReqs = -4dB. (b) SNRpeas =
0dB. (c) SNR;,eqs = 4dB. (d) SNReqs = 10dB.

Table 1 shows the values of all pairwise K-L distances for soft, hard and noisy hard decison fusion
for all values of SNR,,..., and SNR.,,.,.. Note that the K-L distances get larger with SNR,,.., as
expected. For a given SNR,,..., the K-L distances decrease from soft to hard to noisy hard fusion

depending on SNR ..,1n .-

Fig. 4 shows plots of numerically estimated P., P. 1,4 and P. ,..;s, for the four values of SNR,,..
Three plots for F. s, are shown corresponding to the three values of SNR....,.. As expected,
ideal soft decision fusion is better than ideal hard decision fusion which is in turn better than noisy
hard decision fusion. The gap between ideal soft and hard decision fusion can be significant.

The gap between ideal hard and noisy hard decision fusion, on the other hand, is fairly small at
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Figure 4: P, as a function of G' for noise-free soft and hard decision fusion, and noisy hard decision fusion for
different values of SNR,,,.qs. FOr the noisy hard decision fusion, three plots are shown for SNRomm = 0,5, 10 dB.
(8) SNR eqs =-4dB. (b) SNReqs = 0dB. (€) SNR s = 4dB. (d) SNR,,eqs = 10dB.

SNReomm = 10dB. Note that even at SNR,,..; = 0dB, P. ~ 102 for soft decision fusion is
attained with only G &~ 20 independent measurements. Furthremore, the same performance can
be attained with the much simpler hard decision fusion (both ideal and noisy) around GG = 40.
At SNR,,..., = 10dB, which could be attained by averaging over ng = 10 measurements at 0 dB
within each SCR, only G = 8 independent measurements are needed to attain P. ,,.;s, ~ 10~* with
noisy hard decision fusion (Note that P. ,..;s, ~ 0.2 for G = 1.). This demonstrates an important
practical advantage of multiple independent measurements in sensor networks: we can attain reli-
able classification performance by combining a relatively moderate number of much less reliable

independent node decisions. And this can be achieved with simple communication schemes, as the
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one in noisy hard decision fusion.

Measurement SNR = 0dB o Measurement SNR = 10dB
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Figure 5: Comparison of simulated P, and P, bounds based on the Bhattacharya PEP bounds for noiseless hard and
soft decision fusion. (a2) SNR,eqs = 0dB. (b) SNRcqs = 10dB.

Finally, in Fig. 5 we compare simulated P. and P. .4 for noise-free soft and hard decision
fusion with analytical bounds (see (25)) based on Bhattacharya PEP bounds. As evident, the
bounds match the error exponent fairly well but exhibit an offset due to the union bounding via
PEP’s. Furthermore, the bounds get tighter at higher SNR,,,..... We note that bounds based on the
Chernoff PEP bounds would be tighter.!

6 Discussion and Conclusions

All applications of sensor networks are built on two primary operations: i) distributed processing
of data collected by the nodes, and ii) communication and routing of processed data from one part
of the network to another. Furthermore, the two operation are intimately tied: information flow
in a sensor network directly depends on the data collected by the nodes, and the nature of infor-
mation exchange between nodes is constrained by the communication protocols. Thus, distributed
signal processing techniques need to be developed in the context of communication and routing
techniques and vice versa. In this paper we have discussed distributed decision making in a simple
context — classification of a single object — to study basic principles that govern the interaction
between information processing and information routing. Our approach is based on modeling the

object signal as a bandlimited Gaussian field in space and time. This simple model partitions the

1Space-permitting, we plan to include them in the final revised version of the paper.
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network into disjoint Spatial Coherence Regions (SCR’s) whose size is inversely proportional to
the spatial signal bandwidths. This partitioning of network nodes into SCR’s suggests a structure
on information exchange between nodes that is naturally suited to the communication constraints
in the network: high-bandwidth feature-level data-fusion is limited to spatially local nodes within
each SCR, wheras global fusion of low-bandwidth local decisions at each SCR is sufficient across
different SCR’s. The data-fusion within each SCR improves the effective measurement SNR,
whereas decision-fusion across SCR’s combats the statistical variability in the signal. This sim-
ple structure on the nature of information exchange between nodes applies to virtually all CSP

algorithms, including distributed estimation and compression [4].

Our stochastic signal model was motivated by the fact that the signals sensed by different nodes,
even when due to the same underlying source, will exhibit variability due to a multitude of factors
[3]. In the face of statistical variability, we need some form of ergodicity for reliable decision
making which is precisely provided by multiple independent node measurements. Our results
underscore the remarkable advantage of multiple node measurements: fairly unreliable local deci-
sions from multiple SCRs can be combined to yield arbitrary reliable final decisions. In particular,
we showed that under very mild conditions, the probability of misclassification for ideal soft and
hard decision fusion as well as noisy hard decision fusion decays exponentially to zero with the
number of independent measurements. Furthermore, our numerical results indicate that at fairly
reasonable measurement SNRs (around 0-10 dB), relatively modest number of independent mea-

surements (10-50) can yield desirable probabilities of error (= 1072).

The performance of noisy hard decision fusion, the most attractive approach in practice, de-
pends on both the measurement and communication SNR’s as well as the number of independent
measurements (7. The SNR’s have to be just high enough so that all pairwise K-L distances are
non-vanishing; this guarantees exponentially decay in P.(G) with G. However, higher SNR’s yield
better error exponents. A related observation is that rapidly varying signals (with large bandwidths)
require cooperation between nodes in a smaller region (size of SCR’s is small) to yield a sufficient
number of independent measurements. Furthermore, multiple independent measurements could be

also be collected at each node over time to further improve performance at the cost of latency.
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Some of the assumptions in this work warrant further comment.

Non-idealities in practical settings. Examples of non-idealities that could be incorporated in

future work include non-stationary, non-Gaussianity, faulty sensors and propagation path loss.

Power-bandwidth-latency tradeoff. We assumed independent channels from different SCR’s
to the manager node. For large number of SCR’s, this requires a large bandwidth at the manager
node, or imposes a large latency in decision making. On the other hand, if the decisions from
different SCR’s were communicated on a single narrowband multiple-access channel, then reliable
noisy decision fusion would require a higher transmission power at each node. A combination of
dedicated and multiple-access channels would likely be needed based on power, bandwidth and

latency constraints.

Multi-target classification. Simultaneous classification of multiple objects is a much more chal-
lenging problem. For example, the number of possible hypotheses increases exponentially with the
number of objects. Several forms of sub-optimal algorithms, including tree-structured classifiers
[6], subspace-based approaches [11, 12] and sub-optimal fusion schemes [13] could be leveraged

in this context.
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