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Abstract. Target classification fusion problem in a distributed, wireless
sensor network is investigated. We propose a distance-based decision fu-
sion scheme exploiting the relationship between sensor to target distance,
signal to noise ratio and classification rate, which requires less communi-
cation while achieving higher region classification rate when compared to
conventional majority-vote based fusion schemes. Several different meth-
ods are tested, and very encouraging simulation results using real world
experimental data samples are also observed.

1 Introduction

It will soon become feasible to deploy massive amount of low-cost miniature sen-
sors to monitor large regions over ground surface, underwater, or atmosphere.
These sensor nodes will be integrated with miniature power supply, sensors, on-
board processors, and wireless radio communication modules, capable of form-
ing a large-scale ad hoc wireless network [3]. Common signal processing tasks
performed in a sensor system include event detection, and parameter estima-
tion. While these detection, classification, and tracking algorithms have been
well developed for conventional centralized signal processing systems, much less
is known for a distributed wireless sensor network system. A distinct feature
of such a system is that it contains multiple, physically scattered sensing and
processing modules that must collaborate with each other to achieve high per-
formance. Conventional centralized information and data fusion techniques are
unsuited for such an application because too much data must be communicated
from individual sensors to a centralized fusion center. Instead, a family of novel
distributed, localized, and location centric signal processing and information fu-
sion algorithms must be developed to meet this demand.

In this paper, we propose a distance-based decision fusion method for the
collaborative target classification of moving vehicles using acoustic spectral fea-
tures. A key innovation of this approach is to use the distance between the target
and the sensor as a parameter to select sensors that give reliable classification
result to participate decision fusion. Intuitively, sensors that are far from the



target will have lower probability of making correct classification decisions. This
intuitive concept is verified using real world experimental data recorded at a
military training ground using a prototype wireless sensor network. In the rest
of this paper, the background of wireless sensor network architecture will be in-
troduced in section 2.1. The sensor network signal processing algorithms will be
surveyed in section 2.2 with special attention to the task of target classification
and its performance with respect to sensor-target distance. The distance-based
classification fusion method will be discussed in section 3, completed with sim-
ulation results using real world experimental data.

2 Distributed Wireless Sensor Network Signal Processing

2.1 Wireless Sensor Nodes and Network

We assume that a number of sensor nodes are deployed in an outdoor sensor field.
Each sensor node consists of an on-board computer, power source (battery), one
or more sensors with different modalities, and wireless transceivers. Depicted
in Figure 1(a) is a prototype sensor node used in the DARPA SensIT project,
manufactured by Sensoria, Inc. With this sensor node, there are three sensing
modalities: acoustic (microphone), seismic (geophone), and infrared (polarized
IR sensor). The acoustic signal is sampled at 5 kHz at 12 bit resolution. The on-
board computer is a 32-bit RISC processor running the Linux operating system.

Fig. 1. (a) A Sensoria sensor node, (b) sensor field layout

The sensor field (c.f. Figure 1(b)) is an area of approximately 900 x 300 me-
ters in a California Marine training ground. The sensors, denoted by dots of
different colors in Figure 1(b) are layout along side the road. The separation of
adjacent sensors ranges from 20-40 meters. We partition the sensors into three
geographically local regions. Sensors within each region will be able to commu-
nicate freely. One sensor within each region is designated as a manager node.



The manager node will be given the authority to communicate with manager
nodes of surrounding regions. This hierarchy of communication ensures that only
local wireless traffic will be engaged, and hence contributes to the goal of energy
conservation.

Military vehicles, including the Assault Amphibian Vehicle (AAV), the Dragon
Wagon (DW), the High Mobility Multipurpose Wheeled Vehicle ( HMMWYV), and
others are driving passing through the roads. The objective is to detect the ve-
hicles when they pass through each region. The type of the passing vehicle then
will be identified, and the accurate location of that vehicle will be estimated
using an energy-based localization algorithm. In the following discussion, we will
assume there is at most one vehicle in each region. During the experimentation
in November 2001, multi-gigabyte data samples have been recorded and are used
in this paper. We will call these data Sitex02 data set.

2.2 Sensor Network Signal Processing Tasks

In a distributed wireless sensor network, the bulk of signal processing tasks
are distributed over individual nodes. In particular, at each sensor node, the
on-board computer will process the sensed acoustic, seismic and PIR data to
detect the presence of a potential target, and to classify the type of vehicle that
is detected. In this paper, we will focus on the processing of acoustic sensing
channel only.

CFAR Target Detection For each of the 0.75 second duration, the energy of
the acoustic signal will be computed. This single energy reading then will be fed
into a constant false alarm rate (CFAR) energy detector [6] to determine whether
the current energy reading has a magnitude that exceeds a computed threshold.
If so, a node-detection event will be declared for this duration. Otherwise, the
energy reading is considered as contributions from the background noise.

Fig. 2. Illustration of CFAR detection. The upper line is the threshold. Vertical axis
is energy. When the energy exceeds the threshold, detection is made



In Figure 2, a sample energy time series is plotted for a period of 500 sec-
onds. The two horizontal lines represent the threshold with two different false
alarm rates. These thresholds vary with time as they are updated by the energy
readings that do not exceed the thresholds.

From Figure 2, it is clear that when the background noise energy increases,
the threshold increases as well. If the signal energy distribution, which is assumed
to be unknown in the CFAR detection, remains unchanged, the probability of
miss will increase. Furthermore, in this out-door, unrestricted environment, we
observe that when the wind-gusts blow directly into the microphone, it often
create a surge of false detection events. These anomalies are likely to cause
performance degradation.

Target Classification Once a positive target-detection decision has been made,
a pattern classifier using Maximum likelihood pattern classifier [6] is invoked.
The acoustic signal is recording usinga sampling frequency of 4960 Hz. We use
a 50 dimensional feature vector based on the Fourier power spectrum of the
corresponding acoustic time series within the 0.75-second duration. This feature
is created by averaging by pairs the first 100 points of the 512-point FFT, which
are then normalized; the resolution of the frequency spectrum sampling is 19.375
Hz due to the averaging. Some typical features can be seen in Figure 3.
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Fig. 3. Figure of typical normalized acoustic features for different vehicle classes.



Since the original acoustic time series contains both the acoustic signal sensed
from the moving vehicle as well as background noise, the probability of correct
classification may vary as the signal to noise ratio changes. It is intuitive to pre-
dict that if a sensor node is far away from the target vehicle, its SNR is lower, and
hence the probability of correct classification will be lower. This is particularly
easy to explain based on the maximum likelihood classifier architecture. In the
ML classifier, we assume that the feature vector x is drawn from a conditional
probability (likelihood function):

P(z|k) Nexp{_;(x—xk)TEk_l(a:—xk)} . (1)

where z|k is the mean feature vector of ky, type of vehicle and Xy is the
covariance matrix estimated from the training data samples. The ML classifier
determines that = belongs to the kx class of vehicle if P(z|k*) > P(z|k) for any
k # kx. As z is perturbed with higher background noise, it is more likely that
the margin

P(|k+) — max(P(z[k)) - (2)

will shrink. As such, the probability of misclassification will increase. The
level of noise can be determined calculating the signal to noise ratio SNRdB,
and should be inversely proportional to the distance between the node and the
vehicle. To validate this conclusion, we conducted an experiment using a portion
of the Sitex02 data set that was recorded when a vehicle is cruising across the
east-west segment of the road in the sensor field. With the ground-truth data, we
calculate the relative average distance between each sensor to the vehicle as well
as the SNRdB for each node during each 0.75-second interval. We also perform
target classification using the FFT spectrum of the acoustic signal during that
interval, and record the classification result based on Distance and SNRdB.

Then, we collect such results for all the nodes in both regions that cover the
road segment and compiled them into a histogram as shown in Figure 4. It is
quite clear that as the target-sensor distance increases and the signal to noise
ratio decreases, the probability of correct target classification decreases. In fact,
this probability dropped below 0.5 when the target-sensor distance is greater
than 100 meters. This empirically derived probability of correct classification
will offer great information to facilitate the development of a distance-based,
region-wide classification fusion method to be discussed in a moment.

Region-Based Information Fusion Within a short message submitted by
individual sensor nodes to the manager node of the region, information is sent
on the corresponding energy reading (a non-negative number), CFAR detection
result (yes/no), classification result (one integer k), and detection results of PIR
and seismic channels. Hence, its length is less than 30 bytes and would take little
energy and bandwidth to transmit via the wireless channel.
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Fig. 4. Distribution of correct (dark marks) and incorrect (light marks) classifications
based on distance and SNRgg

SNR, dB

50 100 150 200 250 300 350 400 450
Distance, Meters

Fig. 5. Probability of correct target classification versus distance betweens sensor node
and the target and the signal to noise ratio. Darker marks represent higher correct
classification probability



At the region manager node, information fusion tasks will be performed.
First, a region-wide detection decision will be made by majority votes from
all sensor nodes that reported detection at any of the three sensing modality
channels. If the sum of all these votes exceeds a preset threshold, it is deemed
that there is indeed a vehicle present within the region. This will then trigger
an energy-based target localization algorithm [5] to yield an estimate of the
vehicle location. The location information then will be sent to a Kalman filter
based tracking algorithm to facilitate data association, track filtering and track
prediction. Details of these tasks will be reported in the near future.

3 Distance Based Classification Fusion

Apart from the localization and tracking of the target, it is also necessary to clas-
sify the type of vehicle within the region based on target classification results
reported from member sensor nodes. Note that in our current system archi-
tecture, the target localization may be performed prior to region-wide target
classification. Hence, if the target position is relatively accurate, it is possible to
use the estimated target location and known sensor coordinates to calculate the
target-sensor distance. Then, one may estimate the empirically derived proba-
bility of correct classification at a particular sensor node based on the distance
information as described in section 3.

3.1 Data Fusion

Statistically speaking, data fusion [2] is the process of estimating the joint pos-
terior probability (likelihood function in the uninformed prior case) based on
estimates of the marginal posterior probability. Let x () denote the feature vec-
tor observed at the i*” sensor node within the region, C}, denotes the k' type
of vehicle, the goal is to identify a function f(-) such that

Pz € Cylz(1),...,2(N)) 2 P(z € Cylz).
~ f(g(P(x € Cilz(i)),1 <i< N). (3)

In our current work, we let the maximum function g(zx) = 1if 2z, > 25, k # j,
and g(z) = 0 otherwise. Hence, our approach is known as decision fusion. Con-
ventionally, there are two basic forms of the fusion function f.

Multiplicative Form If we assume that x(¢) and z(j) are statistically inde-
pendent feature vectors, then

P(x € Cila) = [[ Ple € Cule(i)) - (4)

N
=1

g

This approach is not realistic in the sensor network application and cannot
be easily adapted to a decision fusion framework.



Additive Form The fusion function is represented as a weighted sum of the
marginal posterior probability or local decisions:

N

A baseline approach of region-based decision fusion would be simply choose
w; =1 for 1 < ¢ < N. This would be called the simple voting fusion method.

3.2 Maximum A Posterior Decision Fusion

With distance-based decision fusion, we make each of the weighting factors w; in
equation 4 a function of distance and signal to noise ratio, that is w; = h(d;, s;)
where d; is the distance between the i*" sensor and the target and s; is the signal
to noise ratio defined as

E,-F
SNRaB = 10 - logy (Sn) . (6)

En

where E is the signal energy and F,, is the noise mean energy, both deter-
mined by the CFAR detection algorithm. We can use then the characterization
gathered from the experiment referred in section 2 to formulate a Maximum A
Posterior (MAP) Probability Gating network, using the Bayesian estimation

ﬁ (.T S Ck) = P((E c C’k|g,di,si) . P(§|di,8i) . P(dZ,SZ) . (7)

The prior probability P(d;, s;) is the probability that the target is at the dis-
tance range d;, and the acoustic signal SNRdB is at the s; range, and can be esti-
mated empirically from the experiments. The conditional probability P(z|d;, ;)
is also available from the empirically gathered data. With these, we may simply
assign the following weights in eq. 5:

w; = P(x|d;, s;) - P(d;, s;) - (8)

In other words, if a particular sensor’s classification result is deemed as less
likely to be correct, it will be excluded from the classification fusion.

3.3 Nearest Neighbor Decision Fusion

It is desired to obtain fusion methods that will reduce the amount of information
exchange required for decision making. Thus, it is logical to propose a method
that will rely on as few node results as possible while maintaining acceptable
results.

Let x, y be two independent, binary-valued random variables such that



a fzx=1

P(x):{l—aif:c—O' )
P {05 <m>

where 0 < a,b <1, and a > b. Let

lifex—(1—-c)y >0

0 otherwise (11)

z=sign(cc+ (1—c)y—0) = {

where 0 < 6 <1 is a threshold. Our goal is to find ¢, 0 < ¢ <1, such that

P(z =1) is maximized. Let us consider the four different combinations and the
resulting values of cx + (1 — ¢)y:

0 ifz=0y=0
l—cifz=0y=1
c ifz=1y=0
1 ife=1y=1

cx+(1—c)y= (12)

If = y = 1 (with probability ab), z = 1. Also, if x = 1, y = 0 (with probabil-
ity a(1—0)), then z = 1 if ¢ > 6 . Moreover, if x = 0, y = 1 (with probability (1—
a)b), then z = lif ¢ < 6. Since @ > b, hence a(1 —b) = a —ab > (1 —a)b=b — ab.
Therefore,

o _ _ Plzx=1y=0)ifc>0
P(Z_l)_P(x_l’y_lH_{P(m:O,yzl)ifc<0
_Jab+a(l—-b)=aifc>0 (13)
T lab+(Q—a)b=bife<0

Since a > b, it is clear that the choice of ¢ should be such that ¢ > 6 . With
# varying between 0 and 1, the safest choice is ¢ = 1, and it will yield the best
performance.

To generalize the above result, denote z; : 1 <7 < N to be N independent,
binary-valued random variables with P(z; = 1) = a;. Suppose that a1 > a;,7 > 1.
Let

N

N
zzsign(ZciIi—¢9>,Zcizl,ogcigl. (14)
i=1

i=1
Then, the set of weights ¢; that maximize the probability z = 1 will be
c=[ciea...eny]=110...0]. (15)

We have proved the case where N = 2. To prove using induction, suppose
that the said vector will maximize the probability. For the N + 1 case, we want



to maximize P(z = 1), and therefore, we want to maximize the sum of the N +1
c;x; terms.

As all ¢; and x; are positive, the sum will be maximum when its terms
are maximum, which means that we can set ¢y =1 and ¢; =0 for 2 <i < N.
However, we must note that Zil ¢; = 1, and therefore, we can scale the N first
coefficients to be

(16)

o= c¢i(l—cyyq)for1<i< N
L CN+1 fori=N+1

This yields ¢f =1—cyy1, ¢

=0for 2 < i < N, cﬁV_H = c¢y41 and

SN ¢ = 1. So we have two possibilities:

N

o 1-— CN41 Ty = 0
E - Cil; = { 1 T = 1 - (17)
1=

The expected value of this sum will be

E

N
Zcixz‘} =ai+ (1 —cnpr)(l —ai)
i=1

=1l-cnp1t+envtia
=1- CN+1(1 - CL,L') . (18)

Since a; is fixed, this value is maximum when ¢y 41 is minimum, which means
cN+1 = 0 for an optimum case.
We now have another possible choice of w;. That is,

Wi = { 0 otherwise ’ (19)

This choice of weights represents a nearest neighbor approach, where the
result of the closest node to the target is assumed to be the region result.

We can use other choices that are functions only of distance. In this work,
we use a simple threshold function:

{1 di S dma:r
w; =

0 otherwise (20)

We compare these three different methods of choosing w; to the baseline
method of setting w; = 1 for all ¢, and test them using seven different experiments
in the Sitex02 data set, using one out of n training and testing. Our metrics are
the classification rate and the rejection rate.

The classification rate is the ratio between the number of correctly classified
samples and the total numbered of samples classified as vehicles. The rejection
rate is the rate between the number of samples rejected by the classifier and the
total number of samples ran through the classification algorithm. Consequen-
tially, the acceptance rate is the complement of the rejection rate.



There are two rejection scenarios with our current classifier scheme; one is
at the node level, where one of the classes characterized during training collects
typical samples of events with high energy that do not correspond to vehicles.
These events are incorrectly detected and include such noises as wind, radio
chatter and speech. The other is at the region level, where the region fusion
algorithm does not specify satisfactorily a region classification result, i.e. no
nodes were closer than d,,,, to the vehicle for the distance-based region fusion
algorithm.

It is desired to obtain high classification rates while preserving low rejection
rates. The results are listed in Tables 1 and 2. To analyze the impact of local-
ization errors in the different methods, errors were injected to the ground truth
coordinates following a zero-mean Gaussian distribution with several standard
deviations. The results are shown in Tables 3 to 8.

Table 1. Classification rate fusion results using 4 methods
Fusion |MAP Bayesian|d,,q, = 50 m|Nearest Neighbor|Majority Voting

Method 77.19% 80.82% 83.55% 75.58%
AAV3 33.87% 50.79% 73.33% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 90.63% 84.31% 91.84%
DW3 80.00% 83.78% 85.71% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 75.00% 75.86% 63.33%
DW12 70.00% 65.52% 65.63% 64.29%

Table 2. Rejection rate fusion results using 4 methods
Fusion |MAP Bayesian|d,,q, = 50 m|Nearest Neighbor|Majority Voting

Method 9.53% 21.56% 7.40% 10.40%
AAV3 3.13% 1.56% 6.25% 7.81%
AAV6 4.29% 27.14% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 31.43% 17.14% 14.29%
DW12 30.23% 32.56% 25.58% 34.86%

Table 3. Classification rate fusion results using 4 methods, and error injection

with 0 =12.5m
Fusion |MAP Bayesian|d,,q, = 50 m|Nearest Neighbor|Majority Voting

Method 77.14% 80.51% 81.89% 75.58%
AAV3 32.79% 56.45% 67.21% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 93.88% 90.63% 84.31% 91.84%
DW3 80.00% 81.08% 83.33% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 78.26% 75.86% 63.33%

DW12 66.67% 57.14% 62.50% 64.29%




Table 4. Rejection rate fusion results using 4 methods, and error injection
with ¢ = 12.5 m

with 0 =25 m

Fusion |MAP Bayesian|d,,q., = 50 m|Nearest Neighbor|Majority Voting
Method 9.75% 22.32% 7.40% 10.40%

AAV3 4.69% 3.13% 6.25% 7.81%

AAV6 4.29% 25.711% 2.86% 7.14%

AAV9 3.92% 37.25% 0.00% 3.92%

DW3 4.76% 11.90% 0.00% 4.76%

DW6 6.06% 9.09% 0.00% 0.00%

DW9 14.29% 34.29% 17.14% 14.29%

DW12 30.23% 34.88% 25.58% 34.86%

Table 5. Classification rate fusion results using 4 methods, and error injection

with 0 =25 m

Fusion |MAP Bayesian|d,,., = 50 m|Nearest Neighbor|Majority Voting
Method 77.74% 79.42% 79.29% 75.56%
AAV3 37.70% 54.39% 55.36% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 100.00% 88.24% 91.84%
DW3 80.00% 82.86% 80.95% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 72.00% 72.41% 63.33%
DW12 70.00% 46.67% 58.06% 64.29%
Table 6. Rejection rate fusion results using 4 methods, and error injecti

Fusion |MAP Bayesian|d,,q, = 50 m|Nearest Neighbor|Majority Voting
Method 9.75% 24.78% 8.63% 10.40%
AAV3 4.69% 10.94% 12.50% 7.81%
AAV6 4.29% 30.00% 2.86% 7.14%
AAV9 3.92% 50.98% 0.00% 3.92%
DW3 4.76% 16.67% 0.00% 4.76%
DW6 6.06% 6.06% 0.00% 0.00%
DW9 14.29% 28.57% 17.14% 14.29%
DW12 30.23% 30.23% 27.91% 34.88%

Table 7. Classification rate fusion results using 4 methods, and error injection

with 0 =50 m

Fusion |MAP Bayesian|d,,q, = 50 m|Nearest Neighbor|Majority Voting
Method 77.74% 80.48% 76.72% 75.58%
AAV3 37.70% 51.28% 39.29% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 95.00% 86.27% 91.84%
DW3 80.00% 84.62% 78.57% 82.50%
DW6 100.00% 95.24% 96.97% 100.00%
DW9 66.67% 72.22% 71.43% 63.33%
DW12 70.00% 65.00% 64.52% 64.29%




Table 8. Rejection rate fusion results using 4 methods, and error injection
with ¢ =50 m

Fusion |MAP Bayesian|d,,q., = 50 m|Nearest Neighbor|Majority Voting
Method 9.95% 46.01% 9.24% 10.40%
AAV3 4.69% 39.06% 12.50% 7.81%
AAV6 5.71% 45.71% 4.29% 7.14%
AAV9 3.92% 60.78% 0.00% 3.92%
DW3 4.76% 38.10% 0.00% 4.76%
DW6 6.06% 36.36% 0.00% 0.00%
DW9 14.29% 48.57% 20.00% 14.29%
DW12 30.23% 53.49% 27.91% 34.88%

3.4 Results and Analysis

For Tables 1 to 8, the cells that give the highest classification rate are highlighted,
including tied cases. It is seen that Nearest Neighbor method yields out the best
results consistently when the error is low or nonexistent - in 9 out of 14 cases. The
distance-based and MAP-based methods give comparable results in cases where
the error is larger (each method has the highest rate in 4 to 6 cases out of 14).
However, the rejection rates are unacceptable for the distance-based method,
even with nonexistent error, with an average of 35%.
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Fig. 6. Average classification and acceptance rate results for different classification
region fusion methods



Figure 6 shows the average performance of the different methods for all the
error injection scenarios. The results of the error impact experiments show that
the MAP-based classification fusion is not heavily affected by the error injection;
the change for the classification rate is less than 0.1% in average for an error
injection up to ¢ = 50 m and the rejection rate increases 0.1% in average. The
effects on the other methods are more pronounced, with a change of 3% in
average in classification rate for the Nearest Neighbor method and an increase
of 24% in the rejection rate of the distance-based method.

These experiments show higher classification rates for the MAP and Nearest
Neighbor approaches while maintaining comparable acceptance rates. Further
research is needed on additional considerations to avoid transmission of node
classifications that have low probability of being correct; it is expected that the
MAP-based method will easily allow for these additions.
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