WaveScheduling: Energy-Efficient Data Dissemination for Sensor

Networks

Niki Trigoni! Yong Yao!

Alan Demers!

Johannes Gehrke!

Rajmohan Rajaraman?

May 17, 2004

Abstract

Sensor networks are being increasingly deployed for di-
verse monitoring applications. Event data are collected
at various sensors and sent to selected storage nodes for
further in-network processing. Since sensor nodes have
strong constraints on their energy usage, this data trans-
fer needs to be energy-efficient to maximize network life-
time. In this paper, we propose a novel methodology for
trading energy versus latency in sensor database systems.
We propose a new protocol that carefully schedules mes-
sage transmissions so as to avoid collisions at the MAC
layer. Since all nodes adhere to the schedule, their ra-
dios can be off most of the time and they only wake up
during well-defined time intervals. We show how routing
protocols can be optimized to interact symbiotically with
the scheduling decisions, resulting in significant energy
savings at the cost of higher latency. We demonstrate
the effectiveness of our approach by means of a thorough
simulation study.

1 Introduction

Sensor networks consisting of small nodes with sensing,
computation and communication capabilities are becom-
ing ubiquitous. A powerful paradigm that has emerged
recently views a sensor network as a distributed Sensor-
DBMS and allows users to extract information by inject-
ing declarative queries in a variant of SQL. In deploying
a SensorDBMS one should consider important limitations
of sensor nodes on computation, communication and pow-
er consumption. Energy is the most valuable resource
for unattended battery-powered nodes. Since radio com-
munication consumes most of the available power, Sen-
sorDBMSs need energy-efficient data-dissemination tech-
niques in order to extend their lifetime. An importan-
t communication pattern within sensor networks is the
sending of sensor readings to a designated sensor node.
Let us give two examples where this pattern arises. First,
consider a heterogeneous sensor network with two type-
s of sensor nodes: many small-scale source nodes with
low-power multi-hop communication capabilities, and a

few powerful gateway nodes connected to the Internet.
In this setup, data flows from the sources to the gate-
way nodes. Our second example is motivated by resource
savings through in-network processing. In-network pro-
cessing algorithms coordinate data collection and process-
ing in the network at designated nodes called view nodes
[27, 15]. Data flows from sources to relevant view nodes
for further processing.

In order to achieve energy-efficient data flows between
sources and view nodes, we address several challenges in-
trinsic to ad hoc network communication: minimizing col-
lisions at the MAC layer, managing radios in a power-
efficient manner, and selecting energy-efficient routes. In
this paper we consider data dissemination strategies that
avoid collisions (and message retransmissions) at the cost
of higher message latency. We carefully coordinate trans-
missions between nodes allowing them to turn off their
radios most of the time. Since current generation radios
consume nearly as much power when listening or receiv-
ing as when transmitting [10, 20, 31], the ability to turn
them off when not needed yields significant energy sav-
ings. (The idle:receive:transmit ratios observed in these
studies are 1:1.2:1.7 [10], 1:2:2.5 [20], and 1:1.05:1.4 [31].)

The remainder of this paper is organized as follows.
We introduce our model of a sensor network in section 2.
Section 3 enumerates several variants of scheduling prob-
lems and discusses their complexity. Section 4 presents
our scheduling algorithm and highlights its close inter-
action with the routing layer. A thorough experimental
evaluation of the proposed algorithm and competing ap-
proaches is presented in section 5. We discuss related
work in section 6 and draw our conclusions in section 7.

2 Preliminaries

In this section, we describe our model for sensor networks
and sensor data, and then briefly outline our architectural
assumptions.

Sensor Networks. We consider a sensor network
that consists of a large number of sensor nodes (nodes,
for short) connected through a multi-hop wireless net-

work [26, 17]. We assume that nodes are stationary, and
that all node radios have the same fixed communication
range.! Each node is aware of its own location, and local
node clocks can be reasonably well synchronized (e.g., us-
ing GPS receivers). Nodes are battery powered and thus
severely energy constrained.

Sensor Data. The raw data generated at a sensor n-
ode is gathered by one or more attached physical sensors
such as temperature sensors, light sensors, etc. that mea-
sure the occurrence of events (such as the appearance of
an object) in their vicinity. Each sensor is a separate da-
ta source that generates records with several fields such
as the id and location of the sensor that generated the
reading, a time stamp, the sensor type, and the value of
the reading. Conceptually, we view the data distributed
throughout the sensor network as forming a distributed
database system consisting of multiple tables with differ-
ent types of sensor data.

Communication Patterns and View Nodes. The
sensor network performs in-network processing by collect-
ing data from multiple sensors onto a designated subset
of the nodes that we call the view nodes. The view nodes
may either store directly unprocessed sensor readings or
materialize the result of more complex processing over
sensor readings. The use of views in sensor networks fol-
lows a hybrid pull-push model in which relevant data is
collected and pushed to view nodes, from where the data
can be pulled when queries are issued.

3 Scheduling Problems And

Their Complexity

A data dissemination protocol in a sensor network has
two components: a scheduling algorithm that activates
network edges such that their transmissions do not inter-
fere with one another and a routing algorithm for selecting
routes for individual messages. By exploring the design
space of sensor scheduling and associated routing policies,
we provide a graceful tradeoff between energy usage and
message latency.

The particular choice of the routing and scheduling al-
gorithms depends on the desired performance measures.
Two important performance metrics are energy consump-
tion and latency, and it is the tradeoff between these two
metrics that we study in this paper. In particular, we con-
sider the following optimization problems with respect to
both energy consumption and latency metrics: (i) finding
an optimal pair of routing and scheduling algorithms; (ii)
finding an optimal routing algorithm for a given schedule;
(iii) finding an optimal schedule for a given collection of
routes.

INote that future generations of nodes might have variable-
range radios; we leave an extension of our approach to variable-
range radios for future work.

The underlying framework for our optimization prob-
lems is as follows. We assume that the sensor nodes are
located on the plane and form a multihop wireless net-
work. For simplicity, we assume that the radio range of
each node is identical and equal to 1 unit; so the nodes
form a wunit disk graph: two nodes are connected by an
edge if the Euclidean distance between them is at most
1. We represent the communication workload by the rate
of message generation at each node 4, given by r;, and a
probability distribution that gives the probability p;; that
a message generated at node 4 is destined for node j.

Energy minimization. In the energy minimization
problem, we are given a communication workload among
the sensor nodes and view servers, and our goal is to
determine a data dissemination scheme that minimizes
the energy consumed in delivering all messages within a
bounded delay. We adopt the following model for ener-
gy consumption. Whenever a network edge is activated,
the energy consumed has two components: a fized start-
up cost « for turning the radio on and setting up the
edge for communication, and a variable cost 3, which is is
the per-message transmission and reception cost. Thus,
the energy consumed by an edge activation is given by
(a+pBm), where m is the number of messages sent during
the activation®.

If @« = 0, then the energy minimization problem is
equivalent to finding minimum-hop paths between the
source nodes and the view servers, and hence can be
solved optimally in polynomial time. On the other hand,
if 8 = 0, then the only energy consumption is in activating
edges. In this case, the problem is closely related to find-
ing a minimum Steiner tree connecting the source nodes
to the view servers. The minimum Steiner tree problem,
in which the goal is to determine a minimum-weight tree
in a graph that connects a given set of vertices, is known
to be NP-complete, even when the nodes of the underly-
ing graph lie on a grid, a special case of unit disk graphs.
We extend the NP-hardness proof to apply for arbitrary
a>0and 8> 0.

Theorem 3.1 For any o > 0 and 8 > 0, finding an
optimal routing-scheduling pair to minimize energy s NP-
hard, even when there is only one view server.

We now consider the two other parts of the design s-
pace. First, is there an efficient algorithm to compute a
set of routes that minimize energy, given an activation
schedule? Once an activation schedule is fixed, the fixed
energy cost is already determined by the schedule; so it
only remains to optimize the variable energy cost. Op-
timization of the variable energy cost can be achieved in

20ur model resembles the linear model proposed for mea-
suring latency in communication networks [3], in which a de-
notes the start-up time for an edge and S is the per-message
communication cost. Since the start-up time is applied once
for the network as a whole, rather than the fixed cost per edge
in our model, the specific characteristics of the metric in the
two models are different.

polynomial time by simply routing every message along
the shortest-hop path. The other partition of the design
space concerns selecting an optimal activation schedule
given a set of routes. In this case, we apply a reduction
from the feedback vertex set problem, which is known to
be NP-hard [14], to obtain that selecting an optimal ac-
tivation schedule is NP-hard. We omit the proof due to
space constraints.

Theorem 3.2 For any a > 0 and 8 > 0, given a set of
source-destination routes, the problem of finding an acti-
vation schedule that minimizes energy is NP-hard.

Latency minimization. Given a communication
workload, the latency minimization problem seeks a da-
ta dissemination protocol that minimizes average laten-
cy. Again, we consider different points on the routing-
scheduling design space. It is already known that mini-
mizing latency in an ad hoc wireless network is NP-hard
even for the special case where nodes exchange messages
with their neighbors only [28]; the hardness of the prob-
lem stems from the difficulty of scheduling the network
edges in a non-interfering manner. The reduction in [28]
can be easily extended to the case of unit disk graphs by
considering the 3-coloring problem [11].

Theorem 3.3 Finding a routing-scheduling pair that
minimizes latency is NP-hard. It is also NP-hard to de-
termine an optimal activation schedule given a fized set
of routes.

We finally consider the problem of selecting an optimal
set of routes that minimize latency given a fixed activa-
tion schedule. In order to minimize latency, we need to
take into the account the time that a message may spend
waiting at a node before the next edge on its path is sched-
uled. In Section 4.1, we discuss this aspect and describe
the construction of routing tables that find the minimum
latency path for each message.

Our hardness results indicate that the general prob-
lem of designing an optimal data dissemination protocol,
given an arbitrary sensor workload, is hard. Of course,
hardness results need not necessarily imply that obtaining
approximations is hard. For instance, Theorem 3.3 relies
on the hardness of coloring problems. While the chromat-
ic number for general graphs is NP-hard to approximate
to even a polynomial factor, unit disk graphs admit s-
mall constant-factor approximations (e.g., see [22]). We
leave the problem of designing efficient approximation al-
gorithms to future work, and we instead concentrate on a
specific part of the design space as described in the next
Section.

4 Wave scheduling and routing

In this section we present wave scheduling, a class of pe-
riodic edge activation schedules, and study the close in-
teraction between scheduling and routing with respect to

®

o

'ooo00000000 10000000000

000000000 0000000000
0000000000 0000000000 OO000000000 0000000000
0000000000 0000000000 OO00000000 @000000e00
0000000000 0000000000 @O000000@00 0000000000
0000000000 0000000000 OO000000000 0000000000
0000000000 0000000000 OO000000000 0000000000
000000000 000000000 Q000000000 0000000000
0000000000 0000000000 OO000000000 0000000000
0000000000 @000000®00 OO000000000 0000000000
9.OOOOOO.OO 1OOOOOOOOOOO S(())OOOOOOOOO 51O.OOOOOO.O
0000000000 0000000000 0000000000 0000000000
®000000@00 0000000000 0O00000O000 000000e000
0000000000 0000000000 OO0000O@O000 0000000000
0000000000 0000000000 O000000000 0000000000
0000000000 000000000 0000000000 00000000
0000000000 0000000000 O000000000 000000000
0000000000 0000000000 O000000000 0000000000
0000000000 0O@00000®00 0000000000 0000000000
OC@000000@0 000000000 0000000000 00000000
0000000000 0000000000 OOO0OO0O0OOOO 0000000000
5%DOOOOOOOOO 5é)OOOOOOOOO 'S%OOOOOOOOO 6OOOOOOOOOOO
000 [eJele) 0000000000 @O000000000 O@00000000
®000000000 O@00000000 OO000000@00 00000000 e0
0000000000 0000000000 OO000000000 0000000000
0000000000 0000000000 OO0000000O0 0000000000
0000000000 0000000000 OO000000000 0000000000
0000000000 0000000000 0000000000 0000000000
000 Q0000 00000000 [e]e] OO0 0000000000
0000 Q000 0000000000 @000000000 O®@00000000
®000000000 Oe00000000 OO00000e0O0 00000000 eo

Figure 1: Simple wave on a 10 x 10 grid.

eJelelelele]e olelolelelelo ol le o elole
000000000000000000000
000000000000000000000
000000000000000000000
0000000000000 0e000000
| ®0000000000000
00000000000000
60000000000000
00000000000 000
00000000000000
00000000000000

®0000000000000
00000000000000
60000000000000
000000000000000000
00000000000000

000000 0@000000

000000

o
0000

0000@0000000000000
000.000000000000000

Figure 2: Pipelined wave on a 21 x 21 grid.

the energy and delay metric. Our scheduling mechanis-
m is layered on top of a protocol like GAF [32], which
partitions nodes into cells and periodically elects a single
leader node for each nonempty cell. Nodes determine the
cell that they belong to by using distributed localization
techniques [2, 8]. The size of each cell is set so that a
node anywhere in a cell can communicate directly with
nodes in any of its four horizontal and vertical neighbor
cells. This constrains the side of a cell to have length
L at most R/+/5, where R is the maximal transmission
range of a node. The proposed wave schedules lever-
age the abstraction of partitioning irregularly positioned
nodes into cells organized in a rectilinear grid; they focus
on reducing energy consumption by coordinating inter-
cell communication. For simplicity, we assume a square
rectilinear grid of N x N nodes. Cell (0,0) is located
at the southwest corner of the network. Cells (i + 1, 7),
(3,j+1), (i—1,7), and (4, — 1) are the east, north, west,
and south neighbors, respectively, of cell (3, j).

4.1 Wave Scheduling

Edge activation. In our wave schedules, every (direct-
ed) edge of the rectilinear grid is activated periodically at
well-defined communication intervals, called send-receive

intervals. The interval between activations is the same
for all edges and is referred to as the period. An edge
activation A — B consists of a contention-based and a
collision-free period. During the contention-based peri-
od, all nodes within cell A turn on their radios in order
to run the GAF protocol. If the old leader is energy-
drained, a re-election protocol selects a new leader and
state (routing table and message queue) is transferred to
the new leader. The remaining nodes then send all read-
ings generated since the previous GAF period to the new
leader. This adapted version of the GAF protocol avoids
interference caused by concurrent leader election in near-
by cells. In the collision-free period leaders of A and B
turn on their radios preparing for inter-cell communica-
tion. If A has no data messages to send, it sends a special
NothingToSend (NTS) message, which allows both nodes
to turn off their radios before the end of the allotted inter-
val. The node duty cycle is thus adjusted to local traffic.
In the collision-free period a data (or NTS) message is
not preceded by a pair of RTS-CTS messages, but simply
followed by an ACK.

SimpleWave. The intuition behind wave schedules is
to coordinate message propagation in north, east, south
and west phases. For instance, during the east phase,
only edges of the form (i,5) — (¢ + 1,7) are activated
sending messages along the east direction. Owing to in-
terference, however, we cannot schedule all of the edges
along the east direction. If A denotes the ratio of the
interference range to the transmission range, then a suf-
ficient condition for transmissions from two supernodes
(¢,7) and (41,j1) to avoid interference is the following:
Vi—ii—12+(G—js—-12-L>A-R.

In particular, two cells (7,j) and (41,j) can transmit
simultaneously if s —4; > [A- R/L] + 1, which we denote
by g. In the SimpleWave schedule, we schedule together
edges that are g positions apart. Figure 1 illustrates the
SimpleWave schedule on a 10 x 10 network, with cell size
L = 100m, yielding a g of 7. The north phase starts at
time 1 and lasts for 51 send-receive intervals during which
every north edge is activated exactly once. The following
east phase starts at time 52. In the next interval (time
53) the pattern shifts east by one cell. Only when the
wave has propagated to the eighth column (time 59) it
no longer interferes with node communication in the first
two columns. Notice that at time 59 one can schedule
four edges concurrently: (7,0) — (8,0), (7,7) — (8,7),
(0,1) = (1,1) and (0,8) — (1,8).

In a Simple Wave, each phase takes (N — 1)+ (g —1)g
send-receive intervals and the entire wave period lasts for
4((N—1)+(g—1)g) intervals. This prevents the distribut-
ed deployment of the algorithm in a dynamic network:
when a new cell joins (or leaves) the network, it affects
the wave period and therefore the activation times of all
the other supernodes. Furthermore, every node needs to
know the size of the network. Another important down-
side of the Simple Wave algorithm is that it underutilizes

the capacity of the network.

PipelinedWave. This algorithm is motivated by the
need for distributed and scalable schedules that make
good use of network capacity. Conceptually, a network
can be divided in a number of small fixed-size (g x g)
squares, where all squares have exactly the same sched-
ule. In such a network, the schedule of an edge is de-
termined by its relative location in the square. Since all
edges within the same square interfere with one another,
we can schedule at most one edge at a time. The period of
the resulting schedule is 4g> send-receive intervals. Two
edges are scheduled concurrently if they have the same
direction and the sender nodes have exactly the same lo-
cal coordinates within a g x g square. The Pipelined Wave
schedules a maximum number of non-interfering edges at
each send-receive interval.

The Pipelined Wave algorithm has two important prop-
erties: i) it is easily deployable in a distributed manner,
since local coordination suffices for scheduling a new cell
and ii) it is scalable, because node schedules are not af-
fected by the size of the network. When a cell gets newly
occupied, the associated node waits for at most one period
in order to interact with its neighbors and determine its
local coordinates. By overhearing the schedules of its im-
mediate neighbors it easily determines its own schedule.
When a node enters or leaves the network, the schedules
of the remaining cells do not change.

A modified version of the PipelinedWave algorithm
does not define identical schedules for each square, but
shifts schedules by g positions with respect to the sched-
ules of the four neighbor squares. More specifically, the
east wave of a square is shifted g send-receive interval-
s earlier than the east wave of the west neighbor square,
the north wave is shifted g positions earlier than the north
wave of the south neighbor square etc. A snapshot of the
modified Pipelined Wave algorithm during the east phase
is shown in figure 2. The new algorithm (which is the one
tested in section 5) decreases the latency of message deliv-
ery at the square boundaries. Another tunable parame-
ter in Pipelined Wave is the number of send-receive inter-
vals for each direction (phase) before the wave switches
to another direction. Our experiments show that this pa-
rameter has no noticeable impact on the performance of
the wave schedule.

Synchronization. We briefly discuss two synchroniza-
tion requirements imposed by wave schedules: i) neighbor
nodes must have the same notion of time regarding their
communication slot and ii) nodes in the close neighbor-
hood must be well synchronized so that only edges at
least g positions away are scheduled simultaneously. Ac-
knowledging that perfect time synchronization is hard to
achieve, we relax the initial requirements and propose a
fault-tolerant version of wave schedules. If the drift be-
tween two neighbor clocks does not exceed €, nodes that
are g positions away from each other are synchronized
within ge. In every edge activation, we schedule the re-

ceiver to turn on the radio € time units earlier than the
scheduled time according to its local clock. Recently pro-
posed synchronization protocols for sensor networks (e.g.,
RBS [12] and TPSN [13]) provide tight synchronization
bounds (e.g., 0.02ms for neighbor nodes [13]) and exhibit
a nice multi-hop behavior. Their performance is bound
to decay for very large networks, in which case we as-
sume that a few GPS-equipped nodes will undertake the
synchronization task for the local region.

4.2 Routing

The proposed wave schedules are TDMA-based MAC pro-
tocols that assign periodic transmission slots to inter-cell.
‘Wave schedules are general-purpose energy-efficient MAC
protocols that can potentially be combined with arbitrary
routing protocols. In this section we consider two impor-
tant metrics for evaluating the efficiency of a routing al-
gorithm, namely node energy consumption and message
propagation latency. An interesting outcome of our study
is that energy-optimal routes do not depend on the under-
lying wave schedule, whereas latency-optimal routes are
intrinsically coupled with it.

Energy-based routing. As noted in Section 3, mini-
mum energy routing is achieved by routing along shortest
hop paths. We adopt a simple flooding approach that
evaluates minimum-hop paths from all nodes in the net-
work to a given view node. Each node in the network
maintains a small in-memory routing table of size pro-
portional to the number of view servers. For each view
server, it includes a 2-bit entry giving the direction of the
next hop towards the view. This simple approach works
even in the presence of "holes” (empty cells), as is shown
in [21]. Dynamic node failures (which manifest them-
selves as the appearance of new holes) can be dealt with
by a local flooding phase to repair affected routes, as in
AODV, or by introduction of a greedy face-routing mode
as in GPSR [5, 19]. Alternatively, a node that fails to
deliver a message may store it in memory until the next
flooding phase that reconstructs the tree.

Delay-based routing. We propose a delay-based rout-
ing algorithm that, given a certain wave schedule, mini-
mizes message latency between a pair of source and view
nodes. FEach node C maintains a routing table, that
contains for each view V and each neighbor IV a triple
(V, N,d), where d is the latency of the minimum-latency
path from C to V among all paths with the next-hop be-
ing N that C is presently aware of. On updating a routing
entry, node C also sends the information (V, N,d) to its
neighbors. On the receipt of such a message, neighbor N*
of C does the following: i) it evaluates the time dt that
a message sent over N* — C remains at C before being
forwarded with the next wave via C — N towards view
V; ii) if an entry (V,C,d') with d' < d + dt exists in the
routing table of N*, then the routing message is dropped
- otherwise, the routing entry is replaced by (V, C, d+ dt).

When the above distributed algorithm converges, every
node has determined the minimum-latency paths to each
view. Routing messages can be piggy-backed on regular
or NothingToSend messages as in the case of energy-based
routes.

5 Experimental Evaluation

We implemented a prototype of wave scheduling in the
NS-2 Network Simulator [6] and compared its perfor-
mance with two other approaches: (i) an existing tree-
based scheduling and routing scheme [21] and (ii) using
IEEE 802.11 with different duty cycles.

‘Wave scheduling. We simulate a network of 20 by 20
grid cells of size 100m? each. The ratio of interference to
communication range is 550/250 and the ratios between
radio idle, receive and transmit power are 1:1.2:1.6. Ev-
ery edge activation between two consecutive cells lasts
for 200ms. A node can send about 10 packets during an
edge activation given a link bandwidth of 20kbps. The
receiver wakes up 30ms before the sender in order to al-
low for clock drift. The size of a square in a pipelined
wave is set to 8 by 8 grid cells. Experiments run for
1000 seconds and the traffic workload varies from 0 to
2500 messages. The time that a message is generated is
selected at random, uniformly over the simulation period.
The source location of a message is randomly selected to
be any of the non-empty cells, and the destination to be
any of the views. Cells containing views and empty cells
are randomly distributed in the network.

We first compare the behavior of the PipelinedWave
schedule under two wave routing metrics: the minimum
hop-count and the minimum-delay path. Figure 3 shows
the average path delay, under light load, for the two met-
rics, i.e. the time between a generation of a message
at a source and its delivery at the destination. The
minimum-energy routing metric defines paths with high-
er delay than the minimum-delay metric and the gap in-
creases as we increase the number of holes from 0 to 100
(25% of all cells). The energy overhead of the minimum-
delay metric was observed to be negligible.

Our second experiment shows the scalability of our
scheme with respect to the number of view nodes. Figure
4 shows the average observed message delay, which cap-
tures queueing delay due to traffic. We set the number of
empty cells to be 0. With more view nodes, the load is
better balanced across the network, the average message
propagation delay is smaller and the overall capacity of
the network increases. Figure 5 shows that the energy
usage of the wave does not increase with the number of
views, for a given number of messages.

We also examine the impact of empty cells, on the per-
formance of wave schedules. The number of views is 10
and a randomly selected set of 0 to 80 cells are set to be
holes. Figure 6 shows that the message latency increases

with the number of holes: messages wait longer in order
to make a turn to bypass a hole. The capacity of the net-
work is only 500 messages for 20% (80) holes (the message
delay increases considerably after that point), whereas it
rises to more than 1500 for networks without holes. Inter-
estingly, the average energy consumption per non-empty
cell (per node) increases with the number of empty cells,
as shown in Figure 7. Although fewer messages are deliv-
ered per time unit, these messages follow longer paths and
every node ends up routing a higher number of messages,
therefore spending more energy.

In our next experiment, we vary the number of step-
s that the pipelined wave spends in each phase (or di-
rection) resulting in different interleaved schedules. We
would like to measure the message delay and node energy
consumption for waves of 1, 2, 4, 8 and 16 steps. Since dif-
ferent interleaved schedules select different delay-optimal
routes, our expectation was that they would also perform
differently in terms of node energy and message delay, e-
specially for networks with many holes. Our experiments
however showed almost no difference. In order to ensure
that our results are consistent irrespective of the location
of views (wrt to empty cells), we run an experiment with
200 destination nodes (views) and 80 holes. As shown
in figures 8 and 9 the average energy consumption per
node and the average propagation delay per message are
surprisingly similar for different interleaved schedules.

Tree Scheduling We compare wave scheduling with
an existing tree-based scheduling and routing scheme [21].
Trees are generated as a result of a flooding mechanism
initiated at each view node. Every node selects as its par-
ent the neighbor on the shortest path to the root (view).
It is therefore expected that the paths used in tree sched-
ules are shorter than paths used in waves. Routing in
a tree is trivial: each non-view node forwards every mes-
sage it receives to its parent. In a tree-based schedule, we
activate edges in reverse order of their distance from the
root. Every tree edge is activated for 200ms seconds, as
in the case of the wave.

To generalize tree scheduling to handle multiple views,
we construct a collection of spanning trees, one tree root-
ed at each view server. An edge activation schedule can
then be derived in several ways. At one extreme is a
conservative schedule, which is simply a concatenation of
schedules for the individual trees. @ We define a period
p of repeating the activation of every tree. If we have m
views, the first tree is activated at times {0,p,...}, the
second at {p/m,p + p/m,...}, and so on. We assume
that the interval p/m is long enough to activate all edges
of a single tree, so that consecutive activations do not
overlap. In Figures 10 and 11, these schedules are re-
ferred to as T'ag_-Consec_Every_p, where p is the period
between two activations of the same tree. At the other
extreme, we consider aggressive schedules that activate
all trees in parallel. In our experiments, we use the
name Tag_Parall_Every_p to refer to aggressive sched-

ules in which all trees are activated concurrently every p
seconds. For instance, we activate all m trees together
at times {0,p,2p,...}. Figures 12 and 13 show a grace-
ful tradeoff between energy and delay as we increase the
length of period p. We note that the most energy-
efficient consecutive schedule that achieves a capacity of
1000 messages has period 60 seconds. Likewise, the most
energy-efficient parallel schedule that achieves a capacity
of 1000 messages is activated approximately every 12 sec-
onds. Beyond 1000 messages (per 1000 seconds), the de-
lay for these two schedules starts increasing and it would
increase without bounds had we continued to generate
messages with the same rate for longer periods.

IEEE 802.11 with different duty cycles. We also
study power-conserving variants of the IEEE 802.11 pro-
tocol. We vary the duty cycle of the protocol, by turn-
ing off the radio regularly and allowing communication
only during 1% to 10% of the time. The performance
of the resulting schemes, named Duty Cycle_z, is shown
in Figures 14 and 15. Routing is performed as in tree-
scheduling, i.e. messages follow the shortest paths to the
views. Notice that for a load of 1000 messages we can on-
ly select duty cycles greater than 8%, otherwise the traffic
exceeds network capacity and the queues increase with-
out bound. The reader can see trends in energy and delay
similar to those observed in the tree-scheduling schemes.

Comparison of waves with other schemes. In
order to compare different protocols we first select a giv-
en traffic load and we only consider protocols that can
serve this load without exceeding capacity, which is the
point at which average delay starts increasing. In fact,
we compare the most energy-efficient versions of different
protocols (with 10 views and 10% empty cells): for 1000
messages, we select the variants T'ag_-Consec_Every_60,
Tag_Parall_Every-12, Duty_Cycle_8 and the pipelined
wave with step 1. Figure 16 shows that the wave pro-
tocol has the longest delay, followed by the consecutive
tree schedule, the parallel tree schedule and the 802.11
(with duty cycle 8%). The reverse pattern is observed
with respect to node energy consumption in Figure 17.
The wave protocol is at one extreme offering the higher
energy savings (better by an order of magnitude than any
other scheme) at the cost of higher delay. The 802.11 pro-
tocol with duty cycle 8% is at the other extreme offering
very small message delays at the cost of higher energy.
The energy-delay tradeoff of the two tree scheduling algo-
rithms is also worth observing: activating trees consecu-
tively (as opposed to concurrently) saves energy because
it avoids interference among different trees, but it incurs
higher message latencies.

6 Related Work

The advent of sensor network technology has recently at-
tracted a lot of attention to MAC and routing protocols

that are specifically tailored for energy-constrained adhoc
wireless systems.

MAC protocols: IEEE 802.11 [30] is the most wide-
ly used contention-based protocol; although nodes can
periodically switch to a power saving mode, in the ac-
tive periods they suffer from interference and overhear-
ing. The PAMAS MAC-level protocol turns radios off
when nodes are not communicating [29], but it requires
a second channel for RTS-CTS messages. PicoNet also
allows nodes to turn off their radios [4]; a node wishing
to communicate must stay awake listening for a broad-
cast message announcing its neighbor’s reactivation. In
S-MAC [34, 35], nodes are locally synchronized to follow
a periodic listen and sleep scheme. S-MAC does not ex-
plicitly avoid contention for the medium, but reduces the
period of overhearing by sending long DATA packets an-
notated with their lengths. NAMA and TRAMA avoid all
collisions at the MAC layer by announcing the schedules
of nodes in the 2-hop neighborhood and electing nodes to
transmit in a given time slot. Our waves avoid schedule
propagation overhead, at the expense of having fixed slots
for every edge activation.

Routing algorithms: Several routing protocols for
ad-hoc networks have been proposed in the literature [24,
18, 7, 25, 23]. There has also been a plethora of work
on energy-aware routing [9, 29, 36] but without consider-
ing the interplay of routing and scheduling. The TinyDB
Project at Berkeley investigates tree-based routing and
scheduling techniques for sensor networks [21, 16]. An
energy-efficient aggregation tree using data-centric rein-
forcement strategies is proposed in [17]. A two-tier ap-
proach for data dissemination to multiple mobile sinks is
discussed in [33].

7 Conclusions and Future

Work

In this paper, we have shown a class of algorithms that
allows us to trade energy versus delay for data dissem-
ination in sensor networks. Our approach is based on
carefully scheduling the sensor nodes such that each n-
ode can stay idle most of the time, and only turns on its
radio at scheduled intervals during its turn to either re-
ceive or send a message. Our experiments show that the
proposed wave scheduling algorithm results in significant
energy savings at modest increases in latency.

References

[1] ACM SIGMOBILE. Procecdings of the jth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM-98). ACM Press,
1998.

[2] Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An in-building
RF-based user location and tracking system. In INFOCOM (2), pages
775-784, 2000.

[3] B. Beauquier, S. Perennes, and O. Delmas. Tight bounds for broadcast-
ing in the linear cost model. Journal of Interconnection Networks, 2(2):175—
188, 2001.

[5]

(6]

[71

18]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones, and D. Leask.
Piconet: Embedded Mobile Networking. I[EEE Personal Communications,
4(5):8-15, October 1997.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. Wircless Networks, 7(6):609-616,
2001.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heideman-
n, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan,
Ya Xu, and Haobo Yu. Advances in network simulation. IEEE Computer,
33(5):59-67, May 2000.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jor-
jeta Jetcheva. A performance comparison of multi-hop wireless ad hoc
network routing protocols. [1], pages 85-97.

N. Bulusu, J. Heidemann, and D. Estrin.
localization for very small devices, 2000.

Gps-less low cost outdoor

Jae-Hwan Chang and Leandros Tassiulas. Energy conserving routing
in wireless ad-hoc networks. In Proceedings of the 2000 IEEE Computer and
Communications Societics Conference on Computer Communications (INFOCOM-
00), pages 22-31, Los Alamitos, March 26-30 2000. IEEE.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: A energy-
efficient coordination algorithm for topology maintenance in ad hoc
wireless networks. ACM Wircless Networks, 8(5), September 2002.

B. Clark, C. Colbourn, and D. Johnson.
Mathematics, 86:165-177, 1990.

Unit disk graphs. Discrete

Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. SIGOPS Oper. Syst. Rev.,
36(SI):147-163, 2002.

Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync
protocol for sensor networks. In Proceedings of the first international con-
ference on Embedded networked sensor systems, pages 138-149. ACM Press,
2003.

M. Garey and D. Johnson. Computers and intractability: A guide to
the theory of np-completeness. 1979.

Abhishek Ghose, Jens Grossklags, and John Chuang. Resilient data-
centric storage in wireless ad-hoc sensor networks. In Proceedings of the
4th International Conference on Mobile Data Management MDM 2003, pages 45—
62, 2003.

Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek.
Beyond average: Towards sophisticated sensing with queries. In 2nd
International Workshop on Information Processing in Sensor Networks (IPSN *08),
page to appear, 2003.

Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: A scalable and robust communication paradigm for
sensor networks. pages 56—67. ACM SIGMOBILE, ACM Press, 2000.

David B Johnson and David A Maltz. Dynamic source routing in ad hoc
wireless networks. In Imielinski and Korth, editors, Mobile Computing,
volume 353 of The Kluwer International Sercies in Engineering and Computer
Science. Kluwer Academic Publishers, 1996.

Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing
for wireless networks. In Mobile Computing and Networking, pages 243—254,
2000.

O. Kasten. Energy consumption. Technical report, ETH-Zurich, 2001.

Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. Tag: A tiny aggregation service for ad-hoc sensor networks. In
OSDI, 2002.

M. Marathe, H. Breu, H. Hunt III, S. S. Ravi, and D. Rosenkrantz.
Simple heuristics for unit disk graphs. Networks, 25:59—68, 1995.

V. Park and S. Corson. Temporally-ordered routing algorithm (tora)
version 1 functional specication. Internet Draft,
http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-02.txt,
1999.

Charles Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers. In
ACM SIGCOMM’94 Conference on Communications Architectures, Protocols and
Applications, pages 234—244, August 1994.

Charles E. Perkins. Ad hoc on demand distance vector (aodv) routing.
Internet Draft,
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt,
tober 1999.

Oc-

G. J. Pottie and W. J. Kaiser. Embedding the Internet: wireless in-
tegrated network sensors. Communications of the ACM, 43(5):51-51, May
2000.

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin,
Ramesh Govindan, and Scott Shenker. Ght: A geographic hash table
for data-centric storage. In First ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), 2002.

A. Sen and M. Huson. A new model for scheduling packet radio networks.
In Proceedings of IEEE Infocom, pages 1116—-1124, 1996.

Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing
in mobile ad hoc networks. [1], pages 181-190.

IEEE Computer Society. Wireless LAN medium access control (mac)
and physical layer specification. IEEE Std 802.11, 1999.

M. Stemm and R. Katz. Measuring and reducing energy consumption of
network interfaces in hand-held devices. IEICE Transactions on Communi-
cations, E80-B:1125-1131, 1997.

Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed en-
ergy conservation for ad hoc routing. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, pages T0-84,
2001.

Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-
tier data dissemination model for large-scale wireless sensor networks.
In Proceedings of the Eighth Annual International Conference on Mobile Computing
and Networking (MobiCom,), 2002.

Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of the IEEE Infocom,
pages 1567—1576, 2002.

Wei Ye, John Heidemann, and Deborah Estrin. Medium access control
with coordinated, adaptive sleeping for wireless sensor networks. Tech-
nical Report ISI-TR-567, USC/Information Sciences Institute, January
2003.

Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and en-
ergy aware routing: A recursive data dissemination protocol for wireless
sensor networks. Technical Report UCLA/CSD-TR-01-0023, University
of Southern California, May 2001.

Average Message Delay Evaluated From Routing Tables
140

PipelinedWaveDelay_stepl_views10 —+—
PipelinedWaveEnergy_stepl_views10

120

100

80

60

delay (secs)

40
20

0

0 20 40 60 80 100
EmptyCells

Figure 3: Delay vs energy routing

Average Message Delay

PipélinedWave‘Delayﬁste‘plfho\esO‘ —_—
PipelinedWaveDelay_stepl_holes20 —x—
200 PipelinedWaveDelay_step1_holes40 —x%—
PipelinedWaveDelay_stepl_holes80 —&—
2 150
@
<
>
& 100
©
]
50
0
0 500 1000 1500 2000 2500

Messages

Figure 6: Effect of holes on delay

Average Energy Consumption

18 PipelinedWaveDelay_stepl_views200 —+—
16 PipelinedWaveDelay_step2_views200 —%—
14 PipelinedWaveDelay_step4_views200 —%—

PipelinedWaveDelay_step8_views200 —&—

g 12 PipelinedWaveDelay_step16_views200 —&—
S
g 10
s 8
2 6
5]

4

2

0

0 500 1000 1500 2000 2500

Messages

Figure 9: Effect of steps on energy

Average Message Delay

200

Tag_Parall ——
Tag_Parall_Every 6 —>—
Tag_Parall_Every 8 —%—
150 Tag_Parall_Every_12 —&—
Tag_Parall_Every 20 —&—
Tag_Parall_Every 30 —e—
Tag_Parall_Every_40 —e—

delay (secs)
=
[=]
o

50

0 500 1000 1500 2000 2500
Messages

Figure 12: Delay: parallel trees

Average Energy Consumption

200
DutyCycle_1 —+—
DutyCycle_2 —»*—
DutyCycle_3 —*—
150 DutyCycle_ 5 —8—

DutyCycle_1I
kKX
A
0 500 1000 1500 2000 2500
Messages

Figure 15: Energy: 802.11

energy (Joules)
=
[=]
o

a
<3

0

Average Message Delay

300
PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —x—
250 PipelinedWaveDelay_stepl_views10 —%—
PipelinedWaveDelay_stepl_views20 -
% 200
&
)
< 150
Kl
©
© 100
<
50]
e
0
0 500 1000 1500 2000 2500

Messages

Figure 4: Effect of views on delay

Average Energy Consumption

16 v T T T
PipelinedWaveDelay_stepl_holesO —+—
14 + PipelinedWaveDelay_stepl_holes20 —x<—
PipelinedWaveDelay_stepl_holes40 —*—
. 12r PipelinedWaveDelay_stepl_holes80 —&—
@
2 10t x
3
2 gt Ny
>
3
s 6
5
4l
21
0
0 500 1000 1500 2000 2500
Messages

Figure 7: Effect of holes on energy

Average Message Delay

350 Tag_Consec_Every_30 —+—
300 Tag_Consec_Every_40 —%—
Tag_Consec_Every_50 —%—
250 Tag_Consec_Every_60 —&—
@ Tag_Consec_Every_70 —&—
4] Tag_Consec_Every_80
o 200 & =4
& 150
8
100
50
0
0 500 1000 1500 2000 2500

Messages

Average Energy Consumption

PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 ——
10 PipelinedWaveDelay_stepl_views10 —%—
PipelinedWaveDelay_stepl_views20 —&—

energy (Joules)
(=]

0 500 1000 1500 2000 2500
Messages

Figure 5: Effect of views on energy

Average Message Delay

180 T T T y
PipelinedWaveDelay_stepl_views200 —+—
160 PipelinedWaveDelay_step2_views200 —x—
140 PipelinedWaveDelay_step4_views200 —%—
PipelinedWaveDelay_step8_views200 —&—
& 120 PipelinedWaveDelay_step16_views200
4]
ﬁ 100
z 80
©
© 60
40
20
0
0 500 1000 1500 2000 2500

Messages

Figure 8: Effect of steps on delay

Average Energy Consumption

80 Tag_Consec_Every_30 —+—
70 Tag_Consec_Every_40 —<—
Tag_Consec_Every_50 —*—
60 Tag_Consec_Every_60 —&—
Tag_Consec_Every_70 —&—
50 Tag_Consec_Every_80 —o—

energy (Joules)
B
o

0 500 1000 1500 2000 2500
Messages

Figure 10: Delay: consecutive trees Figure 11: Energy: consecutive trees

Average Energy Consumption

500 Tag_Parall ——

450 Tag_Parall_Every 6 —<—

400 Tag_Parall_Every 8 —*—
— Tag_Parall_Every 12 —&—
o 350 , Tag_Rarall, Every 20, —#—
> 300 Tag_Parall_Every_30 —e—
S Tag_Parall_Every 40 —e—
= 250
)
5 200
3 150

100 [0} 0]

so | G —o—=2 et

H=
0
0 500 1000 1500 2000 2500

Messages

Figure 13: Energy: parallel trees

Average Message Delay

90
Tag_Consec_Every 60 —+——
80 - Tag_Parall_Every 12 —»—
70+ DutyCycle_8 —*—
PipelinedWaveDelay_stepl —&—

6075.5745—97”%/{3
50 |

40
30 -
20

10t "
P

0 200 400 600 800 1000 1200 1400

Messages

delay (secs)

Figure 16: Comparing schemes

9

Average Message Delay

350
DutyCycle_1 —+—
300 DutyCycle_2 —>—
DutyCycle_3 —*—
250 DutyCycle_5 —&—
& DutyCycle_8 —&—
§ 200 DutyCycle_10
2 150
©
<
100
* //e/
0
0 500 1000 1500 2000 2500
Messages
Figure 14: Delay: 802.11
Average Energy Consumption
120 Tag_Consec_Every 60 —+—
Tag_Parall_Every 12 —<—
DutyCycle_8 —*—
. 100 PipelinedWaveDelay_stepl —&—
m
E)
2
2
> 60 XX
8
g
5 40
;
20
o g——8——&8—+& —F

0 200 400 600 800
Messages

1000 1200 1400

Figure 17: Comparing schemes

