
PROVABLY ROBUST VOLUME MESHING
‡

Chee Yap∗ and Sylvain Pion
Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

Email: yap,pion@cs.nyu.edu

July 24, 2002

ABSTRACT Numerical nonrobustness of pro-
grams is well-known and widespread in all of computa-
tional science. This phenomenon has major negative
impact on productivity and automation in industry.
The recent development of an approach called Exact
Geometric Computation (EGC) promises to wipe
out nonrobustness problems for a large class of com-
putational problems. One of these problems is mesh
generation. Meshing is a key process in automated
design, manufacturing and simulation, all vital areas
in the Army mission. We believe that EGC should
become a key support technology in the Army of the
21st century. In this paper, we describe the design and
implementation of a provably robust algorithm to pro-
duce a Cartesian volume mesh around a triangulated
2-manifold. Two features of our solution are (1) use of
EGC techniques and (2) simplicity of the algorithm.
The problem of numerical nonrobustness is solved by
(1). With (2), it becomes possible to exhaustively ana-
lyze all degenerate situations, thereby eliminating the
other main cause of non-robustness.

1. INTRODUCTION

Program crashes attributable to numerical errors are
well-known. Dramatic recent examples include the Pa-
triot Missile errors in the Gulf War and the French Ar-
iane Rocket disaster. Although numerical errors can
often be tolerated, serious problems arise when they
lead to inconsistent combinatorial structures or invalid
states in a program execution. Such errors (usually
benign) have become ”qualitative” or ”catastrophic”.
Catastrophic errors are not mere inconveniences, but
have major impact on scientific/programming produc-
tivity, and manufacturing costs and quality. Recent
development of an approach called Exact Geomet-
ric Computation (EGC) in Computational Geome-
try promises to wipe out nonrobustness problems for a

‡This research is supported by NSF/ITR Grant #CCR-
0082056. Sylvain’s work is conducted under a postdoc fellowship
of this grant.

large class of computational problems. Roughly speak-
ing, the problems which current EGC techniques can
practically solve is the class of bounded-depth prob-
lems with low algebraic degree. The problems of sur-
face and volume mesh generation fall under this class.
Many robust algorithms have now been implemented
using EGC principles, especially in the well-known
LEDA and CGAL projects. There are two libraries
that support general EGC capabalities for program-
mers: our Core Library and LEDA reals. See Yap
(1997,2002) for a general survey and the references.

The goal of this paper is to design and implement
a robust algorithm for Cartesian volume mesh. Our
main application is in software systems for CFD sim-
ulations. Quoting1 industry experts in computational
fluid dynamics (CFD) on a typical scenario: in a CFD
aircraft analysis with 50 million elements, we spend
10-20 minutes for surface mesh generation, 3-4 hours
for volume meshing, 1 hour for actual flow analysis,
and finally 2-4 weeks for geometry repair. Using a
fully robust algorithms, we can eliminate the 2-4 weeks
of repair effort, at the cost of more time in surface
and volume meshing (and probably the original surface
modeling step). This tradeoff is expected to be favor-
able as the realtime human intervention is eliminated.
More generally, mesh generation is a key algorithmic
component in automated design, manufacturing and
simulation, all vital to the Army mission. In moderm
manufacturing, precision and reliability are two key
goals. Numerical robustness is an important part of
reliability. Hence we believe that EGC ought to be
part of Army’s support technology of the future.

2. DESIGN ISSUES

There are several reasons why implementations are
nonrobust. We note two main ones. (A) The first rea-
son stems from the use of approximate machine arith-
metic for numerical computation. Many solutions have

1Tom Peters (University of Connecticutt) and Dave Fergu-
son (The Boeing Company), talk at the DARPA/NSF CARGO
Kickoff Workshop, Newport RI, May 20-23, 2002.



been proposed here but in practice, implementors use
some form of the “epsilon-tweaking trick”: knowing
that comparison with 0 is too fragile, they replace 0
by some small empirical (epsilon) value. (B) The sec-
ond reason is related to the first. Many implemented
algorithms are simply incomplete (do not cover all pos-
sibilities). When fixed precision arithmetic is assumed,
the issue of completeness becomes too complicated to
state and degenerate cases are typically ignored by the
program logic.

In this paper, we describe and implement a fully ro-
bust volume mesh generator. We avoid the numerical
problems of (A) by using the principles of EGC. In-
deed, this feature is mostly automatic because we im-
plement our algorithm using the Core Library. We
avoid the incompleteness of (B) by making our algo-
rithm as simple as possible. Thus we use Cartesian
meshes and design the algorithm around a simple al-
gorithmic criteria for splitting cells. Cartesian meshes
have demonstrated their usefulness in the past by suc-
ceeding on arbitrarily complex geometry, when other
meshing algorithms break down. To see why simplic-
ity is important, consider the intersection of a trian-
gulated surface Σ with a volume cell B: the topology
of Σ ∩ ∂B can be a very complex planar graph. Im-
plementations often do not handle this correctly in the
sense of (A) or (B). Indeed maintaining a full-blown
planar graph structure is a major piece of software on
its own right. Our approach avoids this.

3. ALGORITHM

Our algorithm constructs a volume mesh around a
model that is a bounded triangulated 2-manifold Σ,
represented by the usual triple (V,E, T ) of vertices,
edges and triangles. The mesh is basically a collec-
tion of polyhedral cells. For CFD applications, each
cell stores its centroid, its volume and a list of all its
faces. Each face stores its centroid and area and the
two incident cells. “Cartesian” means the cells are ob-
tained as the intersection of boxes with the interior
or exterior of Σ. A box (or hexahedra) is a set of
the form [x1, x2) × [y1, y2) × [z1, z2). We have three
kinds of boxes: flow, solid, cut, indicating (respec-
tively) boxes that are exterior to, interior to, and in-
tersecting the manifold. The initial mesh M0 is a uni-
form grid of boxes that covers the manifold Σ. This
mesh is successively refined into more refined meshes,
M0,M1,M2, . . .. At the ith stage, we have a mesh
tree Ti whose nodes are cubes and whose leaves form
Mi. We obtain Ti+1 from Ti by splitting a leaf u of
Ti, producing subboxes as children of u.

Our base algorithm is extremely simple. Exten-
sion of the base algorithm will be discussed below. The
base goal is this: Each box B in the mesh intersects
Σ in at most one vertex and has at most one connected

component. If this condition is violated at B, we split
B. We assume that boxes are in fact cubes, and split-
ting a cube produces 8 identical subcubes. The base
goal implies that cut cells can be classified as a V -cell
(if it intersects a vertex), an E-cell (if it intersects an
edge but is not a V -cell) or an F -cell (otherwise).

We outline a method to achieving the base goal. As-
sume that each leaf in the current merge tree is asso-
ciated with a V-list, an E-list and an F-list that stores
(respectively) all vertices, edges and faces that inter-
sect the cube. The algorithm to decide to split or not,
using the following sequence of decisions:
(1) If the V-list has more than one vertex, split.
(2) If the V-list has one vertex, but an edge in the E-
list or face in the F-list is not incident on V, split.
(3) If the V-list has only one vertex, output a V-cell.
(4) If there is more than one edge in the E-list, split.
(5) If the E-list has only one edge, but a face in the
F-list is not incident to this edge, split.
(6) If the E-list has only one edge, output an E-cell.
(7) If the F-list has more than one face, split.
(8) If the F-list has one face, output an F-cell.
(9) Output a FLOW or SOLID cell.
The simple criteria used here allows us to readily
prove termination and correctness. The final deci-
sion (FLOW or SOLID) can be correctly determined if
we propagate suitable information during splits. The
predicates for these criteria are easy to implement us-
ing the Core Library. Degeneracy is explicitly handled:
the fact that the boxes of the mesh partition the initial
space helps this analysis.

We consider various extensions of the base algo-
rithm. We can introduce criteria for smoothness or
buffering to ensure that the change in levels between
adjacent cells is gradual. Another is to allow splits to
be uneven and boxes that are not cubes. The base
goal can be relaxed by requiring that σ intersects the
boundary of a box B only in a single cycle.

ACKNOWLEDGEMENT We are grateful for
discussions with Marsha Berger on Cartesian meshes
and CFD applications; with Tom Peters and Chris
Hoffmann on robust meshing in practice.

REFERENCES

Yap, C. K., “Robust geometric computation.” In
J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry,
chapter 35, pages 653–668. CRC Press LLC, Boca
Raton, FL, 1997. Updated 2002 for a new edition.
(http://cs.nyu.edu/yap/)


