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ABSTRACT 
 
Acoustic sensors on the future warriors will be able to 

not only detect tactical target signatures for enhanced 
situational awareness, but they will also be able to monitor 
the health, performance, and voice of the soldiers wearing 
these sensors.  This use of this information is crucial for 
soldier survivability, lethality, and mobility. The Army 
Research Laboratory (ARL) has developed a unique body-
contacting acoustic sensor that can monitor the health and 
performance of soldiers or firefighters while they are doing 
their mission. ARL has put sensors on soldiers and 
firefighters to monitor them.  Vital-sign indications and 
physiological parameter trends of soldier in strenuous and 
hazardous environments can be continuously and remotely 
monitored.  Very diverse physiological indicators can be 
detected with acoustic sensors. 

 
1.  INTRODUCTION 

 
Since the Objective Force Warrior will require a 

communications sensor, judicious selection of a single 
sensor that detects voice, physiology and other acoustic 
events will eliminate redundant sensors and reduce the 
weight, power, and cube of future soldier ensembles.  The 
ARL has developed a unique body-contacting acoustic 
sensor that can monitor the health and performance of 
soldiers or firefighters while they are doing their mission 
[Scanlon, 1998].  ARL’s unique gel-coupled sensor has 
acoustic impedance properties similar to the skin that 
facilitate the transmission of body sounds into the sensor 
pad, yet significantly repel ambient airborne noises due to 
an impedance mismatch.  ARL’s emphasis has been to put 
sensors on soldiers to monitor them while they are doing 
their mission.  Vital-sign indications and physiological 
parameter trends of soldier in strenuous and hazardous 
environments can be continuously and remotely monitored 
with acoustic sensors. The acoustic physiological sensor 
data can augment other medical monitoring initiatives, and 
can contribute important information to other larger Army 
programs such as Land Warrior, Scorpion, Objective Force 
Warrior, Warfighter Physiological Status Monitor, Warrior 
Medic, and Future Combat System of Systems.  The 
patented technology will benefit the commercial sector for 
ambulatory health monitoring and can be purchased for 
research purposes from Sensory Devices in New Eagle, PA 
[Scanlon, 1996]. 

 
2.  EXPERIMENT AND HARDWARE 

 
ARL conducted an experiment at the University of 

West Virginia’s Firefighter Training Academy in 
Morgantown, WV [Scanlon, 2002].  Firefighters from the 
Clarksburg fire department volunteered to be monitored 
during their normal training in the burning building 
facility.  Two scenarios were developed for the experiment.  
The first experiment, which will be termed the smoke-test, 
required the firefighting team to crawl/walk through a 
smoke-filled two-story building with an uncharged 1.5-
inch hose to search for and rescue a mannequin (located on 
the second floor).  Once the mannequin was brought down 
the stairs and outside, the firefighters then went back to 
where they found the mannequin and brought the hose 
back out.  Burning hay in a 55-gallon drum created the 
smoke.  The second experiment, termed the fire-test, 
required the firefighters to enter a smoke-filled building to 
locate a disoriented firefighter on the first floor whose 
alarm was sounding, escort him to safety, then proceed 
upstairs to put out the fire with the 1.5 inch hose.  Burning 
several pallets and wood pieces created the fire and smoke.  
The purpose of this test was to see how well the acoustic 
sensors monitored physiology amidst the intense activity 
and environment.  Data was collected for post-processing.  
Sensors, data acquisition hardware, and data transmitter 
were attached to one firefighter, who was the lead of the 
team and was at the nozzle of the hose.  Digitized data was 
stored on a small body-worn computer as well as digitally 
transmitted to another laptop in a safe location.  The 
equipment used on this test allowed for redundancy of 
acoustic sensors and data acquisition, but would not be 
present for a fielded system.  In addition to the acoustic 
sensors, electrocardiogram (ECG) sensors were used to 
verify the heart rate, temperature sensors quantified the 
thermal ambient environment, and a microphone 
characterized the ambient noise.   

 
Figures 1 and 2 show the gel-coupled neck acoustic 

sensors and it’s positioning in this test below the hood.  
Two sensors were chosen for redundancy and noise 
canceling features.  Heartbeats, breaths, and voice all 
appear simultaneously at the two sensors, but motion 
artifacts may be out of sync and different in signature.  
Figures 3 and 4 show how the mask acoustic sensor is 
attached.  Although Velcro was a field expedient solution 
in this test, the sensor could ultimately be build into the 
helmet, hood, or mask itself for similar contact.  An 
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acoustic sensor in the mask position picks up heartbeat 
pulses from the temple, breath sounds through sinus and 
tissue conduction, voice, coughing, wheezes, and activity. 

 

   
Fig. 1: Neck sensor strap         Fig. 2: Sensor on neck 

  
Fig. 3: Mask sensor               Fig.4: Sensor on mask 

 
Figures 5 and 6 show the wrist acoustic sensors in a 

wristband embodiment.  In proximity to the sensor were 
positioning mechanisms to ensure the band did not rotate, 
and kept the sensor over the radial artery for strongest 
signal positioning. Figure 7 also shows the seven-lead 
(three channel) ECG pads and wires, along with a 
commercially available Polar Heart Monitor chest band 
often used by runners.  The firefighter’s jacket in figure 8 
protects the equipment while the firefighter is being 
monitored. The three-channel ECG data is stored on the 
Holter Monitor’s PCMCIA memory card.  The 1st channel 
of the ECG is also fed into the computer’s data acquisition 
card.  Not shown is the Holter monitor, transmitter, boom 
microphone, temperature probe, BioRadio data transmitter, 
and the PCMCIA eight-channel data acquisition card that 
goes into the Libretto hand-held computer.  Underneath the 
computer is the preamplifier and anti-aliasing filter for 
each sensor prior to digitization by the DAQ-card. 
 

   
Fig. 5:Wrist sensors             Fig. 6: Sensor on wrist 

 

     
Fig. 7: ECG/Polar          Fig. 8: Full gear 

 
3.  DATA AND RESULTS 

 
ECG derived heart rate was collected for both 

firefighters doing both scenarios.  Firefighter number one 
reached an average heart rate of 165 beats per minute 
(BPM) while dragging the mannequin to safety, whereas 
he only reached 152 BPM while putting out the fire.  
Firefighter number two reached an instantaneous 
maximum heart rate of 182 BPM while maneuvering the 
mannequin in the smoke-test, and 168 BPM during the 
fire-test.  The data also showed that firefighter number 
two’s resting heart rate (between smoke and fire events) 
stayed near 110 BPM, whereas firefighter number two was 
able to get below 100 BPM during the rest period.  Prior to 
the first test, both firefighters’ heart rates were 
approximately 80 BPM.  The ability to monitor this resting 
heart rate, when the physiological signal-to-noise ratio 
(SNR) is good, is in itself is an important tool, in that it can 
be a indicator of which firefighters are ready to reenter a 
building fire or need to be relieved.  The duration of 
elevated heart rates and the maximum rate achieved can 
also be an indicator of a firefighter’s ability to safely 
perform his or her mission.    

 
Alternating wrist activity was present often in these 

scenarios, and is indicative of the firefighter crawling on 
the floor (the jarring motion artifacts from using alternating 
hands to support him as he crawled).  Very often the 
amplitude of the intense activity exceeded the maximum 
input range for the data acquisition and was clipped.  By 
using a 16- or 24-bit A/D converter, instead of the 12-bit 
used in this test, clipping would no longer occur.  Although 
clipping of the data is undesirable from a data processing 
point of view, it does indicate that the firefighter is still 
active and involved in some form of intense motion.  In its 
simplest form, one might conclude that if he is still 
moving, he is still healthy, regardless of whether the 
physiology is visible amongst motion artifacts.  The 
heartbeats from the acoustic mask sensor are clearly visible 
at the beginning of this set, but are less apparent when the 
crawling activity starts.  The mask physiology is often lost 
due to firefighters constantly turning their heads while 
maneuvering, and resulting motion of the breathing hose, 
mask, and helmet were transmitted through the mask straps 
to the sensor.  The SNR of the heartbeat physiology at the 
head is not a strong as at the neck.  The ECG suffers from 
motion artifacts during the intense motion sections.   



 
The data shows very clear acoustic heart signals with 

distinct peaks for determining the inner-beat-intervals 
(IBI’s).  For example, a person with a short-time average 
heart rate of 60 BPM might have ten beats spaced exactly 
1-second apart, or five beats slightly above and five beats 
slightly below 1-second intervals, with an irregular IBI 
sequence during that 10-second period.  How the IBI’s 
fluctuate on a beat-by-beat basis, as well as long-term 
trends, is termed heart rate variability (HRV) and gives an 
indication of how well the body is regulating blood 
pressure, breathing, and core temperature [Mulder, 1981].  
These IBI’s also can indicate mental activity related to 
concentration on a task, or varying due to mental and 
physical distractions.   

 
Figure 9 shows two seconds of data from the 

computer-based storage.  From top to bottom the sensors 
are:  L-neck, R-neck, L-wrist, R-wrist, ambient 
microphone, mask, polar HR, and ECG.  Note the very 
clear indications of heartbeats on all physiological sensors.  
Of significant importance is the time-difference-of-arrival 
between the ECG and the neck and wrist acoustic pulses.  
The literature shows that changes in the pulse-wave-
velocity (PWV) are directly proportional to changes in the 
systolic blood pressure [Dauzat, 1996].  The ECG monitors 
the electrical stimulus that creates a mechanical pressure 
wave that leaves the heart and travels through the arteries.  
The time it takes for the pulse to travel between two fixed 
locations (such as from the heart to the wrist) is directly 
proportional to the pressure of the blood (speed of sound in 
the artery changes with respect to density and the velocity 
component of the blood flow).  By measuring the time-
difference between the heartbeat indications from ECG-
neck, ECG-wrist, ECG-head, neck-wrist, head-wrist, and 
neck-head, one can approximate the systolic blood pressure 
on a beat-by-beat basis.  The neck and wrist acoustic 
sensors provide the largest length of travel (and delta-
time), and therefore would permit best timing resolution 
with the lower sample-rates of wearable data acquisition 
systems.   

 

 
Fig. 9: Two seconds of computer stored physiology 

 
Cross-correlation techniques between the wrist and 

neck acoustic sensor bring out the PWV time shift very 
well [Scanlon, 2001].  Note that the time-differences 
between the ECG waveforms and Polar heartbeat 
indications are a result of the Polar processor, transmitter, 
and receiver delays.   

 
The acoustic sensors and transmitters used in this 

experiment could have been built into a wristwatch and 
helmet headband, and provide the same data without the 
firefighter even knowing he or she is being monitored.  
The wristwatch alone could be worn continuously to 
monitor pre- and post-alarm heart rate, and activity.  Work 
has been done in approximating systolic pressure from the 
slope of the second heart-sound, but it is not as accurate as 
the PWV technique since there are many physiological 
variables that also affect the pulse shape [Bartles, 1992].  It 
is also possible that breath rates can be derived from 
acoustic pulses at the wrist by analyzing changes in 
amplitude that result from the lungs over- or under-
pressurizing the heart.  This phenomenon of decrease in 
pulse pressure during inspiration is called “pulsus-
paradoxis”, and is often associated with situations where 
respiration is labored [Parsons, 1978].   

 
As mentioned earlier, ARL’s gel-coupled sensor is 

excellent for voice reception.  Figure 10 compares the 
neck-acoustic sensor (top) to the boom microphone 
(bottom) during speech.  Both sensors detect intelligible 
speech, but the ambient noise rejection of the neck-
contacting sensor is excellent and the voice SNR is higher 
with the neck acoustic sensor.  The gel-coupled neck 
sensor has demonstrated significant SNR benefits over 
boom microphones for use with automatic speech 
recognition software such as Entropic, ViaVoice, and 
Dragon Naturally Speaking [Bass, 1999]. 

 

 

 
Fig. 10: Spectrogram comparing voice at airborne mic 
(top) and gel-sensor on neck (bottom) 



Figures 11, 12, and 13 show time series and 
spectrograms of 80-seconds of data during a simulated 
unconscious firefighter.  The first 20-seconds show him 
walking, standing, and then getting into position on the 
ground.  He then holds as still as possible for 
approximately 40-seconds until his motion sensor alarm 
activates, then he gets up off of the ground.  Figure 11 
shows excellent heartbeats and breaths in the middle 
section with minimal motion artifacts.  Figure 12 shows an 
increase in the amplitude of the neck heart sound, resulting 
either from more blood flow from being in the horizontal 
prone position, or because coupling pressure increased 
because of a change in neck band position or tension.  
Breath sounds are clearly visible throughout.  Figure 13 
shows wrist acoustic activity getting into position on the 
ground, excellent pulsations throughout the unconscious 
period, and intense wrist activity to get up at the end of the 
scenario. 

 
Fig. 11: Spectrogram and time-series of mask data during 
unconscious scenario 

 

 
Fig. 12: Spectrogram and time-series of L-neck data during 
unconscious scenario 

 
Fig. 13: Spectrogram and time-series of R-wrist data 
during unconscious scenario 

4.  SIGNAL PROCESSING 
 
One method to monitor the firefighters is to look at 

short-term energy detected at the sensors.  The higher the 
RMS energy is the higher the activity.  Figure 14 shows 
RMS calculations on the wrist sensor data during the 
smoke-test.  Figure 14 indicates when the firefighter was 
crawling, maneuvering the mannequin for extraction, and 
retrieving the hose after the mannequin was removed.  Had 
the high-level activity diminished significantly for a 
significant period, it would be readily apparent, and could 
cause an alert to be sent, much like the firefighter’s PAS 
motion sensor already does.  High levels at the neck result 
from head turns, voice, jacket, hood, mask movements, and 
muscular activity from lifting or crawling. 
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Fig. 14: RMS energy of left wrist sensor (30 minutes) 
  
When a firefighter goes down due to injury, the SNR 

of the physiology improves greatly.  This is when medical 
monitoring is needed most.  The decrease in RMS energy 
at all acoustic sensors will indicate a decrease in activity.   

 
One advanced signal processing technique used to 

discern physiology from noise is the normalized Lomb-
Scargle (L-S) periodogram.  This research compares and 
contrasts the short-time Fourier transform (STFT) with the 
Lomb-Scargle (L-S) normalized periodogram.  Both 
algorithms were applied to the neck and wrist acoustic 
signal in an attempt to extract the subject’s heart rate in 
“real-time”. The L-S periodogram was initially given 
preference over other spectrum analysis techniques 
because previous research has proven that it produces 
excellent results when processing non-stationary, unevenly 
occurring features [Whitney and Solomon, 2001].   

 
Classical spectrum analysis methods for quantifying 

periodicities, such as the Fast Fourier Transform (FFT) 
assume that the data to be processed is sampled 
periodically and stationary such that it’s statistical 
characteristics do not change with time.  However most 
biomedical signals are not stationary and posses complex 
time-frequency characteristics.  The short time Fourier 
Transform (STFT) attempts to satisfy the conditions of 
stationarity by dividing the signal into blocks of short 
segments in which the signal can be assumed to be 
stationary.  The problem with the STFT is choosing an 
optimal window processing length.  If the analysis window 
chosen is too short, the resulting frequency resolution may 
be poor.  Choosing a longer window will increase 



frequency resolution, however   the assumption of 
stationarity within the window is compromised.    

 
The Lomb-Scargle normalized periodogram evaluates 

data only at times, t(j), that are actually measured and is 
defined in Equation 1 as 
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where x(j) is the input data, N is the length of the input 
data, ω≡2πf, and the offset τ is defined in Equation 2 as 
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making P(ω) independent of any time shift.  The advantage 
of L-S algorithm is that it weights the data on a “per point” 
basis instead of a “per time interval” basis [Press, 1992].   

 
An individual’s heart rate can vary drastically over a 

30-minute time interval.  After testing several window 
lengths, a 5 second or 7500 sample duration was chosen as 
the processing window length with a 95% overlap.  This 
window length produced optimal results because it 
contained an adequate amount of data points needed to 
produce a meaningful heart rate spectrum, however it was 
not too long whereby causing spurious peaks in the 
spectrum relating to heart rate variability during those 
periods of transition for walk to run cycles.  To eliminate 
DC offset, the bias was subtracted from the windowed 
signal. Next, a 40 Hz low pass filter was applied to the 
neck acoustic data, and a 20 Hz low-pass filter was applied 
to the wrist data.  To expedite the processing time, the data 
was decimated by a factor of 10, thus making N equal to 
750 samples.  Finally, both a 4096-point STFT and the 
Lomb-Scargle periodogram were applied to the decimated 
signal and the time-frequency spectrum was computed.  
The L-S periodogram analyzed the data at 798 independent 
frequencies, f, from 0-40 Hz.  The number of independent 
frequencies was derived from the following equation:  
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where ofac, the oversampling parameter, is set equal to 4 
based on previous research [Press, 1992], fhi is 40Hz, and T 
which is the time difference between maximum and 
minimum data points to be analyzed is equal to 
approximately 5 sec.   

 

Figures 15 and 16 illustrate the unprocessed signal 
extracted from the right wrist and left neck acoustic 
sensors.  This interval captures approximately 80 seconds 
of physiological data where the individual pretended to be 
unconscious.  During the first portion of the data the 
subject is positioning himself to lie down, followed by the 
unconscious scenario, and finally he gets up to walk away 
after being rescued. 

 
Fig. 15:  Right wrist acoustic data. 
 

 
Fig. 16:  Left neck acoustic data.  
 

Figures 17 and 18 illustrate the spectrogram of the 
right wrist and left neck acoustic sensor data respectively.  
Analysis of the graphs indicates that the STFT produces a 
good estimation of the fundamental heart rate frequency 
and its corresponding harmonics even though the 
processed data is not stationary. 

 
Fig. 17:  STFT of right wrist acoustic data. 

 



 
Fig. 18:  STFT of left neck acoustic data. 
 

Figures 19 and 20 illustrate the results obtained after 
the L-S periodogram was applied to the same data set as 
mentioned above.  One will notice that the L-S produces 
improved time-frequency resolution as compared to that of 
the STFT. 

 
Fig. 19:  L-S results of right wrist acoustic data.  

 

 
Fig. 20:  L-S results of neck acoustic data. 

 
Analysis of the above results indicates that both 

acoustic sensors produce excellent results in heart rate 
extraction (≈ 2.8 Hz) during those periods of low-level 
activity.  However, when the sensors are subjected to 
intense motion activity, the desired physiological signal is 
distorted due to motion artifacts caused by muscle 
movement and the jarring of sensors against the body.  It is 
during those intervals that the calculated periodogram 
serves as very little help in detecting heart rate.  It should 

also be noted that the noise experienced by the wrist 
acoustic sensor varies in some instances with that of the 
neck acoustic sensor therefore if one set of data 
experiences noise due to motion artifact one may very well 
be able to extract the soldier’s vital signs from an 
acoustical sensor placed at another body location.    

 
A harmonic line analysis algorithm was then applied 

to the data.  The trend for producing the heart rate or 
fundamental frequency is a result of the fact that a periodic 
signal having period τ also exhibits the periods 2τ, 3τ, etc., 
and the residual error obtained by fitting a noise corrupted 
signal by a periodic signal with minimal periodicity τ 
decreases with increasing τ [Dommermuth, 1993].   
Normally, the heart beats at a steady 60 to 80 beats/minute 
or 1-1.3 Hz, respectively.   However during intense 
exercise, ones heart rate may increase up to 200 (3.3 Hz) or 
more beats/minute. Based on this information, only those 
fundamental frequencies located between 0.9 and 3.3 Hz 
are accepted as valid heart rate estimations.  The estimated 
heart rate was then computed by setting it equal to the 
fundamental frequency that contained the largest number 
of harmonics. If by chance the algorithm found no 
frequencies within the specified interval the heart rate was 
set equal to zero.   

 
Figure 21 through 24 illustrate the harmonic line 

analysis results of both the wrist and neck acoustic signal.  
The heart rate estimate is plotted against the STFT of the 
polar heart monitor data in figures 21 and 22 as opposed to 
the L-S periodogram of the polar data in figures 23 and 24.   
The polar heart monitor data was considered to be the 
“truth data” as opposed to the ECG signal during this same 
interval due to the amount of distortion experienced during 
those times of activity.  The ECG leads were not 
adequately applied to the chest area, thus permitting 
motion artifacts to obscure the desired physiology during 
moderate activity.  

 
Fig. 21:  Right wrist heart rate estimation plotted against 
STFT of the polar data. 

 



 
Fig. 22:  Left neck heart rate estimation plotted against 
STFT of the polar data. 
 

 
Fig. 23:  Right wrist heart rate estimation plotted          
against L-S periodogram of polar data. 
 

 
Fig. 24:  Left neck heart rate estimation plotted against L-S 
periodogram of polar data. 

 
In general, the harmonic line analysis algorithm 

performs equally as well when applied to both the STFT 
and the L-S of the wrist acoustic data.  However, when 
applying the harmonic line analysis algorithm to neck 
acoustic data, the results obtained using the Lomb-Scargle 
periodogram are an improvement as compared to those 
using the short-time Fourier transform.    Smoothing 
algorithms can be implemented to reduce the noise-
induced variations from the actual heartbeat frequency. 

 
As a simple example of breath rate detection, high-

passed neck data reveals a lot of broadband high-frequency 
energy resulting from the airflow in the throat.  Using fast-

Fourier transforms (FFT’s) to monitor the temporal 
fluctuations of the RMS energy produces a breath rate peak 
in the power-spectrum results. Figure 25 shows 
intentionally clipped time-series data from the neck sensor, 
and the resulting half-second sliding window RMS energy.  
The clipping of the data removes the influence high-
amplitude motion artifacts have on the RMS calculation, 
and was clipped at a level of three times the median value 
of the absolute value of the band-pass filtered data.  The 
band-passed spectrogram of figure 25 also shows the 
broadband breath cycles.  At the bottom of figure 25 is the 
power spectrum of the RMS energy for the 24-seconds 
shown.  The 0.45-Hz breath rate represents a breath every 
2.2 seconds, which is supported by the ten breath-cycles 
seen in the 24-seconds of data.  Data from the mask sensor 
showed the strongest signal was also at 0.45-Hz. 

 

 

 
Fig. 25: Time, RMS, band-passed spectrogram of L-neck, 
result by FFT breath rate extraction from RMS data 

 
5.  DISCUSSION 

 
This research proves that Lomb-Scargle normalized 

periodogram serves as an excellent tool for heart rate 
extraction from acoustic sensors when there exists a high 
signal-to-noise ratio and very little motion artifact.  It can 
also be concluded that the short-time Fourier transform 
produces an acceptable estimate of heart rate even though 
this algorithm is most commonly used to process stationary 
data. In an attempt to improve upon this algorithm, the root 
mean square (RMS) energy can be calculated and used as a 
reference to indicate the soldier’s level of activity.  If the 
monitored soldier’s energy exceeds a certain threshold it 
can be assumed that the soldier is active and well, and the 
predicted heart rate value may be discarded.  However, 
during periods of low-level activity the soldier’s vital signs 
are of most importance and should be monitored 
continuously.  If the RMS energy is low this may very well 
be an indication that the soldier is wounded and in need of 
medical attention.   



6.  CONCLUSION 
 
Acoustic sensors and signal processing can extract 

much information about the firefighters health and 
performance.  Transmitted data shows that heart rate, 
breath rate, blood pressure and activity can be monitored 
by medics/commanders at a remote location.  The quality 
of the acoustic data is excellent, and can provide much 
more information than the ECG.  The Lomb-Scargle 
periodogram and RMS energy processing of acoustic 
sensor data provides excellent measures of heart rate and 
motion activity.  Breath rates are measured from high-
frequency broadband sounds at the neck or mask or pulse 
amplitude variations at the wrist.  Timing (PWV) between 
two sensors indicates systolic blood pressure on a beat-by-
beat basis.  The IBI’s give pulse rate and an indication of 
heart rate variability.  The acoustic data from this test 
demonstrates that even though physiology is sometimes 
masked by motion and activity artifacts, is still provides 
useful indicators that the firefighter is still active and most 
likely functioning effectively.  It is when the person being 
monitored ceases to be active or during resting periods that 
the acoustic SNR is exceptional for monitoring physiology.  
This is when vital signs monitoring is most important.  
Acoustic sensors and a transmitter will be incorporated into 
a garment, which will reduce some of the motion artifacts 
resulting from the cables and data logging equipment.  It is 
felt that such a shirt could be worn continuously while 
firefighters are on call to monitor the stressful and 
demanding nature of their entire shift.  The same shirt will 
be evaluated on soldiers and for home health monitoring.  
Very diverse physiology is detectable with a single 
acoustic sensor, and more information provides a better 
situational understanding of how the soldier is being 
effected by the environment, equipment, and mission.   
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