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ABSTRACT 
 

In the dynamic environment of mobile ad-hoc 
battlefield (FCS) networks, it is important to have an 
efficient fault management (FM) system capable of 
performing dynamic and rapid fault localization and 
providing appropriate self-healing (service survivability) 
to mission-critical applications in a timely and efficient 
manner. This paper presents a multi-layer fault 
localization mechanism using Bayesian techniques for 
narrowing down the fault/problem on hand. It also 
proposes appropriate cost-performance-complexity 
sensitive self-healing/service survivability mechanisms 
for FCS networks. 
 

1. INTRODUCTION 
 

FCS networks (i.e., the next generation of tactical 
and strategic battlefield networks) are envisioned to offer 
a highly automated, secure, survivable and novel 
paradigm of battlefield operations [Sass02, USA02].  An 
extremely critical aspect of FCS networks is the presence 
of an efficient fault management (FM) system that is 
capable of performing dynamic and rapid fault 
localization and providing appropriate self-healing 
(service survivability), particularly to mission critical 
applications in a timely and efficient manner.  While 
fault localization/root cause analysis and self-healing for 
mobile ad-hoc networks are, in general, very challenging 
problems by themselves, the problems are compounded 
even further in FCS networks due to the following:  (a) 
Ad-hoc nature coupled with mobile infrastructure of 
underlying network. (b) Random/sporadic failures due to 
hostile and/or unintentional attacks. (c) Presence of 
multiple and possibly correlated failures. (d) Presence of 
random soft failures (due to the stochastic nature of 
underlying network) in addition to hard failures (due to 
the more deterministic cases of equipment malfunction). 
(e) Critical need to distinguish between transient and 
non-transient behavior. (f) Cope with non-determinism. 
(g) Obtain solutions that work in real-time - not NP hard.  

This paper is aimed at providing the critically 
needed fault localization and self-healing/survivability 
for FCS networks. In particular the contributions of this 
paper are as follows. First, we present fault localization 
mechanisms that can narrow down the fault/problem on 
hand. More specifically, we describe a multi-layer model 
that uses Bayesian techniques to capture the 
dependencies that may exist between entities in multiple 
network nodes and in multiple protocol layers at those 
nodes; we also outline algorithms to perform the desired 
FCS-network fault localization and briefly present some 
simulation results.  Next, we propose appropriate cost-
performance-complexity sensitive self-healing/service 
survivability mechanisms for FCS networks.  In light of 
the fact that wireless resources are very expensive, the 
proposed mechanism is sensitive to the cost aspect. 
However, due to the presence of a variety of applications 
with varying survivability requirements (e.g., mission 
critical applications require very quick and assured 
delivery while non-mission critical and non-real time 
applications are tolerant to some delays and losses), the 
proposed mechanisms are sensitive to the 
performance/survivability requirements of the various 
applications. Additionally, the proposed self-healing 
mechanisms are adaptive/dynamic and policy-based, and 
can be implemented within the rapidly emerging policy-
based network management framework. Finally, since a 
complex self-healing/fault tolerance mechanism will 
defeat its own purpose, especially in a battlefield 
environment where deployment-ease is an extremely 
important concern, the proposed mechanisms are 
sensitive to the complexity aspects and lend themselves 
to easy and automated (a highly desired feature in the 
FCS-network environment) implementation. 

2. FAULT LOCALIZATION FOR FCS              
NETWORKS 

FCS networks, being wireless mobile and ad-
hoc, possess many unique characteristics because of 
which most existing fault diagnosis techniques cannot be 
directly used. Existing traditional fault diagnosis 
methodology mostly concentrates on detecting, isolating, 



and correcting faults related to network connectivity 
[Jakobson93, Katzela95]. Such diagnosis is focused on 
lower layers (physical and data-link layers) [Nygate95, 
Yemini96], and its major goal is to isolate faults related 
to the availability of network resources, such as broken 
cable, inactive interface, etc. It is common to use event 
correlation techniques to focus on the cause of a problem 
when a manager may receive thousands of alarms from 
different sources resulting from a failure. Since 
availability problems are relatively rare, most event 
correlation techniques existing today assume that only 
one fault may exist in the system at any time and do not 
attempt to detect multiple simultaneous faults. In 
addition, these techniques frequently use a deterministic 
model, which assumes that all dependencies and causal 
relationships are known with 100% certainty. 
 

In the dynamic environment of mobile ad-hoc 
battlefield (FCS) networks, diagnosis may no longer be 
constrained to the lowest layers of the protocol stack. On 
the contrary, fault diagnosis has to reach through the 
transport and application layers into the service layer. 
Since upper layers are necessarily dependent on lower 
layers in order to provide their services, the fault 
management system should integrate fault diagnosis 
across multiple layers. As part of the ARL-sponsored 
CTA Consortium on Communications and Networks, we 
have developed a research methodology for fault 
diagnosis in FCS networks. Our techniques are designed 
to focus on failures that affect network services and their 
use by applications in addition to the more commonly-
studied hardware failures. We have developed a multi-
layer model that uses Bayesian techniques 
[Heckerman95, Pearl88] to capture the dependencies that 
may exist between entities in multiple network nodes and 
in multiple protocol layers at those nodes. In the 
following subsections, we describe this hierarchical 
model and some Bayesian algorithms that operate on this 
model to perform fault correlation. We also outline a 
novel incremental algorithm for hypothesis updating and 
then briefly present some simulation results on the 
performance of all the algorithms. 

 
2.1 Layered Model for Alarm Correlation 
 

For the purpose of fault diagnosis, 
communication systems are frequently modeled in a 
layered fashion imitating the layered architecture of the 
modeled system [Gopal00, Yemini96]. This approach 
provides a natural abstraction of the modeled system's 
entities, reusability of the model's modules, and ability to 
divide the fault management task into separate, simpler 
subtasks. Because of fault propagation, the effects of an 
abnormal operation of functions or services provided by 
lower layers may be observed in higher layers. Fault 
management systems model fault propagation by 
representing either causal relationships among events or 
dependencies among system entities [Gopal00]. 

In the layered fault model, the definition of 
entity dependencies is based on real-life relationships 
between layers on a single host and among network 
nodes communicating within a single protocol layer. The 
layered model proposed by us for FCS networks, based 
on the model proposed in [Gopal00], divides the fault 
model components into services and functions. A service 
offered by protocol layer L between nodes a and c 
(ServiceL(a,c)) is implemented in terms of layer L 
functions on hosts a and c (Network FunctionsL(a) and 
Network FunctionsL(c)), and services that layer L-1 
offers between hosts a and c. Layer L functions on node 
a depend on layer L-1 functions on node a. The recursive 
dependencies among services and functions constitute a 
dependency graph as presented in Figure 1.  
 

 
                       Figure 1: Layered Model 
 

The general dependency graph template 
obtained from services, protocols and functions in 
different layers provides a macro-view of the 
relationships that exist in the system. To incorporate the 
micro-view of the relationships within particular model 
components, the layered model should be further refined 
to include possibly complex relationships within services 
and functions in the same layer. In particular, an end-to-
end service offered by layer L between hosts a and c is 
implemented in terms of multiple host-to-host services 
offered by layer L between subsequent hops on the path 
of a layer L packet from node a to node c (such as  
ServiceL-1(a,c) in Figure 1). Ability to reason about 
failures observed in an end-to-end service, i.e., 
symptoms, and trace them down to particular host-to-
host service failures, i.e., faults, is a feature of our model 
that is important to its applicability to fault diagnosis in 
FCS networks. 
 

With every dependency graph node, we 
associate multiple failure modes that represent 
availability and performance problems pertaining to the 
service or function represented by the dependency graph 
node. We have included the following failure modes that 
are likely to exist in real-life FCS systems: F1: 
service/function ceases to exist (e.g., a cable connection 



is broken), F2: service/function introduces unacceptable 
delay (e.g., one of the host-to-host links is congested), 
F3: service/function produces erroneous output (e.g., bit 
errors are introduced in a link between routers), and F4: 
service/function occasionally does not produce output 
(e.g., packets are lost due to buffer overflow). The micro-
model of ServiceL(a,c) or Network FunctionL(a) defines 
which failure mode occurs in ServiceL(a,c) or Network 
FunctionL(a) when a particular failure mode occurs in a 
service or function on which  ServiceL(a,c) or Network 
FunctionL(a) depends. To create a micro-model for 
Network FunctionL(a), the knowledge of its definition 
and implementation is required. The micro-model of 
ServiceL(a,c) is built based on the knowledge of the 
network protocol used to provide ServiceL(a,c). For 
example, knowing that layer L protocol implements an 
error detection mechanism, one can predict that 
erroneous output produced by ServiceL-1(a,b) (condition 
F3) results in data loss in ServiceL(a,b) (condition F4). 
When layer L does not implement an error detection 
mechanism, condition F3 in ServiceL-1(a,b) results in 
condition F3 in ServiceL(a,b). 
 

Uncertainty about dependencies among 
communication system entities is represented by 
assigning probabilities to the links in the dependency or 
causality graph [Katzela95, Kliger95]. Some commonly 
accepted assumptions in this context are that (1) given 
fault a, the occurrences of faults b and c that may be 
caused by a are independent, (2) given occurrence of 
faults a and b that may cause event c, whether a actually 
causes c is independent of whether b causes c (the OR 
relationship among alternative causes of the same event), 
and (3) root faults are independent of one another. This 
dependency graph can then be transformed into a belief 
network, which is a directed acyclic graph with certain 
special properties [Heckerman95]. Given an evidence set 
(partial assignment of values to variables represented in a 
belief network), belief networks are used to make four 
basic queries: (1) belief assessment, (2) most probable 
explanation, (3) maximum a posteriori hypothesis, and 
(4) maximum expected utility. The first two queries are 
of particular interest in the context of fault correlation. 
The belief assessment task is to compute the probability 
that some variables possess certain values given the 
evidence set. The most probable explanation (MPE) task 
is to find a complete assignment of values to variables in 
a way that best explains the observed evidence. It is 
known that these tasks are NP-hard in general belief 
networks. To the best of our knowledge, no 
approximation has been proposed that works well for all 
types of networks. We focus on a class of belief 
networks representing a simplified model of conditional 
probabilities called noisy-OR gates  [Pearl88]. The 
simplified model contains binary-valued random 
variables. The noisy-OR model associates an inhibitory 
factor with every cause of a single effect and assumes 
that they are all independent. The effect is absent only if 

all inhibitors corresponding to the present causes are 
activated. Belief assessment in polytrees with the noisy-
OR model has polynomial complexity, which makes it 
attractive to use with our problem as an approximation 
schema.  
 
2.2 Algorithms and Simulation Results 
 

We now briefly outline three Bayesian 
algorithms to find the best symptom explanation with 
causal dependencies between events represented by 
dependency graphs transformed to belief networks as 
described in Section 2.1. These algorithms are called 
bucket-tree elimination, iterative belief propagation in 
polytrees, and iterative MPE in polytrees. Iterative belief 
propagation is derived from the original algorithm by 
[Pearl88] and is augmented by us to provide a complete 
symptom explanation hypothesis rather than the marginal 
posterior probability distribution provided by the original 
algorithm. For iterative MPE, an approximation is 
proposed that allows polynomial-time complexity to be 
achieved. We also describe an incremental hypothesis 
updating algorithm that has lower computational 
complexity than the Bayesian algorithms. Details of all 
these algorithms may be found in [Steinder01, 
Steinder02a, Steinder02b]. 
 
Bucket elimination is one of the most popular 
algorithmic frameworks for computing queries using 
belief networks. For the purpose of fault localization we 
use MPE query, for which this algorithm  is exact and 
always outputs a solution. We consider it the optimal 
algorithm for computing the explanation of the observed 
symptoms. The computational complexity of the 
algorithm in bipartite graphs representing the problem of 
end-to-end service failure diagnosis is bound by O(n2en). 
 
Iterative belief propagation in polytrees utilizes a 
message-passing schema in which the belief network 
nodes exchange messages called lambda and pi 
messages. These messages are sent by a node to its 
parent or child depending on computations of marginal 
posterior probabilities of the entire body of evidence in 
specified sub-graphs. Based on the messages received 
from its parents and children, each node then computes  
its belief that the variables have certain values given the 
entire evidence. The algorithm starts from the evidence 
node and propagates the changed belief along the graph 
edges through computations in every visited node. In 
noisy-OR gate belief networks, these computations may 
be evaluated in linear time with respect to the number of 
neighbors that a node has. We have adapted this iterative 
belief propagation algorithm to the problem of fault 
localization with fault models represented by bipartite 
graphs. In this application, we perform one traversal of 
the entire graph for every observed symptom. For every 
symptom we define a different ordering that is equivalent 
to the breadth-first order started in the node representing 



the observed symptom. In order to use this algorithm for 
fault correlation, we must run the inferences again for 
those nodes that correspond to faults with beliefs greater 
than 0.5. The graph traversal may be stopped whenever 
an unobserved path node is reached. A single iteration of 
this algorithm can be shown to be O(n3), and the 
complexity of the entire algorithm is O(n5). 
 
Iterative MPE in polytrees is similar to iterative belief 
propagation, but instead of producing marginal posterior 
probabilities, it produces the most probable value 
assignment to the belief network nodes in each iteration. 
This allows us to eliminate the final fault selection of the 
belief  propagation algorithm which contributes to the 
complexity and is an additional source of inaccuracy. 
Similarly to belief updating, the MPE computation 
algorithm proceeds from the evidence nodes by passing 
lambda and pi messages along the belief network edges.  
We use an approximation in which the algorithm 
computes the MPE for every network node traversing the 
graph starting from the observed symptom in the 
breadth-first order. A single traversal is repeated for 
every observed symptom and at the end, the belief values 
are computed for all network nodes. Because of this 
approximation, a single iteration of the algorithm is 
O(n4), and the complexity of the entire algorithm is O(n6) 
instead of the exponential complexity for the original 
Bayesian algorithm. 
 
Incremental hypothesis updating creates a set of most 
likely hypotheses, where each hypothesis contains at 
least one fault that explains one or more observed 
symptoms. The algorithm proceeds in an event-driven 
and incremental fashion and ranks hypotheses using a 
belief metric. When a new symptom is observed, the set 
of hypotheses is updated with the explanation of the new 
symptom. If a hypothesis is unable to explain the 
new symptom, it is either removed from the set or 
is extended by adding a fault that can explain the 
symptom. Faults are added using a greedy heuristic 
that helps to limit the complexity of the algorithm. 
 

In order to compare the above algorithms 
through comprehensive experiments with a real-life 
application domain, we chose the data-link layer in 
a bridged network in which the path ambiguity is 
resolved using Spanning Tree Protocol. As a result, 
the shape of the considered graphs is reduced to 
trees, thus making random generation of 
dependencies resembling real-life scenarios easier. 
We used two metrics to represent the accuracy of 
the algorithms: detection rate which is the 
percentage of faults that occurred in the network in a 
given experiment that were detected by an algorithm, and 
false positive rate which is the percentage of faults 
proposed by an algorithm that were not occurring in the 
network in a considered experiment, i.e., they were false 
fault hypotheses.  

Figure 2(a) presents the relationship between 
detection rate and network size. We observe that bucket 
tree and MPE algorithms outperform all others by a 
small amount, but they do not scale well to large 
networks.  The shape of the graphs in Figure 2(a) 
indicates a strong dependency of the detection rate on the 
network size.  For small (5-node) networks, the number 
of symptoms observed is typically small (less than 10), 
which in some cases is not sufficient to precisely 
pinpoint the actual fault. In small networks, any mistake 
in fault detection significantly reduces the detection rate. 
When the network gets larger, the number of observed 
symptoms increases, thereby increasing the ability to 
precisely detect the faults. On the other hand, as the 
network size grows, the multi-fault scenarios are 
becoming more and more frequent. In multi-fault 
experiments, it is rather difficult to detect all actual 
faults, which leads to partially correct solutions and the 
decreasing accuracy of the algorithms. Under these 
circumstances, the incremental algorithm has good 
detection rates even for large networks. 
 

Figure 2(b) presents the relationship between 
false positive rate and the network size. For small 
networks, bucket tree and MPE have lower false positive 
rates than the other algorithms. However, as networks 
get bigger, the false positive rate of MPE grows sharply 
suggesting that it has a tendency to propose too big a set 
of faults as a final hypothesis than is actually needed to 
explain all symptoms. Once again, the incremental 
algorithm provides a reasonably good false positive rate 
for large networks. It should be noted that this algorithm 
is faster than all  others which allowed us to test it for 
networks of up to 100 nodes. 
 
 

 
Figure 2: Comparison of accuracies achievable with 
various fault correlation algorithms for different 
network sizes: (a) detection rate, (b) false positive rate 
 
 



3. SELF-HEALING AND FAULT-TOLERANCE 
 

The necessity for self-healing mechanisms that 
provide service survivability (un-interrupted service) 
amidst random/sporadic failures in an FCS network is 
both critical and obvious.  However, as also mentioned in 
the introduction, the dynamic and unpredictable nature of 
FCS networks coupled with the fact that FCS-network 
resources are scarce (hence expensive), renders the 
design of appropriate self-healing mechanisms extremely 
challenging.   This section discusses a novel adaptive 
multi-layer, multi-service self-healing mechanism that is 
also sensitive to the cost, performance and complexity 
aspects. 
 

A majority of the well-known self-healing 
mechanisms that exist to-date2 function from a single 
layer [Wu92]. More specifically, they function at the 
physical layer (L1). Additionally, they employ the 
philosophy of "resource-redundancy" to handling failures 
whereby certain pieces of equipments are devoted solely 
for the purposes of restoration/failure handling.  This 
implies the necessity for "standby" equipment that 
essentially remains idle during "normal" working 
conditions.  Upon a network facility failure, an automatic 
switchover occurs from the malfunctioning/failed 
equipment (i.e., from the  "working/normal" equipment) 
to the "dedicated/standby" equipment.  Hence this self-
healing mechanism is also referred to as an APS 
(Automatic Protection Switching) mechanism.   
Examples of the widely used APS self-healing 
mechanisms in use today are SONET self-healing rings, 
Bidirectional Line Switched Rings (BLSRs), etc.  
 

While the main advantage of an APS 
philosophy is the excellent response time (restoration 
delay < ~50msecs), it has several disadvantages from the 
perspective of being useful in the context of FCS 
networks.  Firstly, it is very resource expensive since by 
definition it works on the principle of resource 
redundancy. FCS networks however are severely 
resource-constrained.  Next, it is limited to handling the 
class of hard failures (i.e., equipment failures) alone.  
Due to the random/sporadic nature of the FCS networks, 
a substantial amount of failures are likely to fall under 
the category "soft" failures, i.e., failures that result from 
the stochastic nature of the network (e.g., excessive 
performance degradation, loss of signal).   Thus, while 
these APS-based mechanisms may have been okay for 
the environment they were tailored for (i.e., telecom 
networks), they will certainly not be suitable in their 
present form for the unpredictable and resource-sensitive 

                                                           
2 Additionally, we observe that the well-known self-
healing systems that are used in practice exist largely in 
the context of wireline (telecom) systems.  Widespread 
and commercial deployment of self-healing in the 
wireless networks is still in its early stages [Kant02]. 

FCS environment.  Furthermore, in light of the diverse 
QoS and survivability requirements of FCS applications, 
it may even be useless to provide a uniform degree of 
restoration (i.e., with restoration delays of < 50 msecs) to 
all of the applications.  For example, while mission 
critical and delay sensitive applications may require 
stringent restoration delay guarantees, loss sensitive 
applications, such as FCS terrain information may be 
okay with delayed albeit guaranteed restoration. Hence, a 
purely APS-based mechanism that is insensitive to the 
different survivability mechanisms will not suffice, and 
in fact may also prove to be futile in the unpredictable 
and random/stochastic FCS environment. 
 
3.1  Dynamic, policy-based multi-layer multi-service 
self-healing mechanisms for FCS networks 
 

In light of the above-mentioned shortcomings, 
we propose a new approach to providing self-healing in 
FCS networks, whereby we deviate from the traditionally 
used APS-based single layer philosophy [Kant02].  The 
first aspect/feature of our proposed approach is that 
restoration is moved "up" in the network, i.e., to the 
network layer (L3) and is non-APS based.  Another key 
aspect is the use of two simultaneous layers (vs. just one 
layer) for providing self-healing. Based on the delay, loss 
and "access-to-network-resource" properties, our design 
will involve the use of both L3 and L1.  More 
specifically, based on our analysis of the properties and 
merits of each of these layers with regards to self-
healing, we design a novel multi-layer mechanism that is 
sensitive to the cost, performance and complexity aspects 
to provide service survivability in the dynamic and 
unpredictable FCS environment. Self-healing at L3 is 
provided by an on-demand trigger for re-configuration (a 
logical re-configuration in this case) and re-routing, 
whereby new routes based on the survivability 
requirements will be computed around the failed network 
element. Since failures of the network element may be 
either hard (e.g., router/switch failure) or soft (e.g., 
excessive loss on a particular link), the affected services 
will be restored by performing a dynamic, on-demand re-
routing around the "failed" element(s) based on their 
survivability requirements, i.e., the high priority 
applications will be restored first followed by the others. 
In addition to L3 self-healing, we propose to tap into the 
excellent delay properties of L1 self-healing by 
triggering a simultaneous but judicious/cost-efficient L1 
restoration. This is achieved by using 1:N N>>1 resource 
redundancy, i.e., very limited dedication of resources, 
which may, for example, be used only in the case of 
mission critical applications (which recall have highly 
stringent delay and loss requirements). 

In the proposed restoration mechanism, upon 
receipt of a failure notification (soft and/or hard failure), 
the fault management (FM) subsystem will invoke the 
fault correlation and localization mechanisms discussed 
in Section 2 to locate the underlying cause of the 



observed symptom.  To provide self-healing, the FM 
subsystem at the Network Management Layer (NML) 
interacts with the Service Management Layer (SML) to 
obtain a list of the affected applications and their 
survivability requirements.  Based on these requirements, 
the FM subsystem will invoke a re-routing-based-self-
healing at the network layer (L3) to restore the affected 
applications in a prioritized manner, i.e., the high priority 
applications will be re-routed (hence restored) first 
followed by the others. More specifically, a dynamic 
event-related trigger will be provided by the proposed L3 
self-healing mechanism to the routing mechanism to re-
compute new routes.  In order to arrive at an appropriate 
route (i.e., avoid the faulty element/s) the proposed self-
healing will also provide the routing mechanism 
information on the "cost" of network paths.  Observe that 
while the "cost" of network paths in the case of a hard 
failure are automatically registered as infinite, in the case 
of a soft failure, it is not so.  Hence, the L3 self-healing 
mechanism will assign a high cost value to the paths 
experiencing the soft failure and provide this information 
to the routing procedure.  The routing produced will use 
these link costs in its route computations, thereby 
arriving at new and improved routes in order to restore 
the affected set of applications. The self-healing 
mechanism will also provide the survivability 
requirements to re-classify the affected applications so 
that they may be re-routed based on their priorities (and 
hence survivability requirements).   

 
Since L3 self-healing will, statistically 

speaking, have higher restoration delays than L1 
restoration, the self-healing strategy may also, based on 
the applications' priority and survivability requirements, 
simultaneously trigger a limited L1 restoration.  For 
example, consider the case of an FCS mission critical 
application with very stringent loss AND delay 
requirements.  In this case, L3 self-healing with the 
highest priority to the mission critical applications may 
be performed. Due to the stochastic nature of the 
network, L3 self-healing will yield statistical guarantees.  
While it is indeed possible to provide stringent (<100 
msec) delays to these applications via prioritized L3 self-
healing, if deterministic guarantees are required and/or 
the set of mission critical applications is very large, then 
the proposed self-healing mechanism will trigger a 
limited L1 self-healing by automatically switching a 
small sub-set of mission critical applications at the 
physical layer.  However, the L1 self-healing now has 
the following important caveats/deviations from the 
traditionally used L1 self-healing.  First, we design the 
system to contain very limited redundancy by having 1:N 
N>>1, i.e., by requiring just one dedicated resource for N 
working resources (vs. the traditionally used 1:1; with 
N=1).  Next, since this is a multi-layer mechanism, the 
self-healing mechanism within the FM sub-system will 
pick out only a sub-set of applications to be restored at 
L1 - which can be policy driven (see also discussion at 

the end of Section 3.2) and be made to correspond to the 
sub-set of mission critical applications.  Further, while 
L1 self-healing has traditionally been the default, in our 
case L3 is the default.  The limited L1 will only be 
triggered if the FM subsystem determines that the set of 
high-priority applications cannot all be restored with low 
delays at L3.  Since the FM subsystem is at the NML and 
has a network-wide view, it will compute the statistically 
expected values (E[.]) of the restoration delays for the 
high priority applications based on its knowledge of the 
system "state", and use this information whether or not to 
invoke L1 self-healing. It will also provide 
restoration/re-routing priority inputs so that the high-
priority applications are (re)classified appropriately 
during the L3 self-healing. 
 

Note that such a judicious and novel 
combination of L3 and L1 self-healing has the merits of 
providing cost and performance sensitive restoration.  
The reductions in cost are obvious since L3 self-healing 
is essentially non APS/non-redundancy based and the 
limited L1 requires very little redundancy.  The 
performance sensitivity is achieved by understanding 
that not all of the applications will require the same 
degree of survivability and hence tailoring the restoration 
of high-priority applications first followed by the others.  
This in combination with limited L1 self-healing for the 
mission critical applications alone will achieve the 
performance (low average restoration delay and loss).  In 
fact, our prior studies on multi-layer self-healing for 
commercial wireline telecom networks [Hsing98] 
provide us with useful insights into the potential of such 
a mechanism. However, the random, ad-hoc and 
unpredictable nature of FCS networks merit further 
investigation into the applicability of this novel multi-
layer restoration philosophy, as discussed in Section 3.2. 
 

The complexity-sensitivity aspect of our multi-
layer approach is achieved as follows.  Our self-
healing/service survivability mechanisms are designed to 
work both directly and indirectly, with a majority of 
existing performance management (PM) and 
configuration management (CM) functionalities. For 
example, responding to and analyzing performance-
related alarms (caused by "soft failures") and responding 
to soft failures by re-routing essentially imply close tie-in 
with existing PM, CM and/or routing functionalities, 
albeit with some modifications. Since the design is based 
on the characteristics of the existing management 
components to a large extent, we anticipate very little 
added complexity to achieve the desired fault-
tolerance/survivability. The self-healing strategy lends 
itself excellently to the rapidly emerging policy-based 
network management (PBNM) paradigm because the  
self-healing alternatives are indeed expressed as well-
defined policies.  Example policies include rules defining 
the choice of a particular restoration layer for a given set 
of applications, rules governing the restoration priorities 



of the applications at any given layer, etc.  In fact, meta-
rules that check for consistency may also be defined as 
policies, for example, policies that prevent simultaneous 
restoration of a given application at more than one layer, 
which constitutes a very important policy set.  
 

In light of stringent security requirements in an 
FCS environment, we note that our self-healing 
mechanism provides the added advantage of tightly 
integrating the self-healing with the SM sub-system. It 
also provides the much-needed integration of FM, CM 
and PM that does not exist in the current commercial 
systems.  Such integration is indeed vital to the 
functioning of the FCS, since severe inconsistencies may 
arise otherwise. Consider for example the case when a 
link frequency carrying high priority/mission critical 
applications experience high BER. In this case a soft-
failure will be registered by the PM component. Due to 
the urgency of the situation, the FM component will try 
to perform a high priority L3 self-healing.  If one of the 
solutions is to dynamically and rapidly re-configure the 
primary path, then the self-healing will trigger such an 
action, calling for immediate co-ordination with the CM 
process. 
     

Hence in such a scenario, it becomes almost 
imperative to design an integrated FM, CM and PM 
system, since to do otherwise may not only yield a bad 
system design but also result in severe network 
management discrepancies.  If for example, the CM was 
not invoked in time, but the FM/self-healing sub-
processes were to go ahead and mark different 
routing/configuration paths for the affected applications, 
there arises a serious discrepancy between the originally 
configured path and the newly configured path/info.  
This can lead to serious damage (loss of information, 
compromise of frequency, etc.) which can be extremely 
detrimental, especially when high-priority/mission 
critical applications are involved. Our policy-based self-
healing also offers the much needed mechanism to define 
policies that ensure the consistency in the operations of 
each of the individual NM piece-parts/sub-systems. 
 
3.2 Tactical Battlefield Network Simulation Model 
and Results 
 
We have adopted the following systematic and phased 
approach in building Proof-of-Concept (POC) simulation 
models [Kelton91]. Since L3 self-healing is 
characterized by statistical performance and is more 
challenging (in terms of modeling and simulation (M&S) 
than L1 APS self-healing, which in-fact has deterministic 
performance, we have first modeled L3 self-healing for a 
tactical and strategic network as described below and 
studied its restoration performance (captured via 
restoration delay and loss performance statistics).  Our 
results indicate the excellent potential of this approach.  
In order to factor in L1, we note that the performance of 

L1 self-healing is deterministic in value (50 msecs).  Its 
cost is inversely proportional to "N".  Since the cost of 
L3 self-healing is zero (in terms of extra resources), the 
total cost is essentially equal to the cost of L1, which by 
our very definition is very low (low resource 
redundancy).   

 
Figure 3: Tactical Battlefield Simulation Network              

Model 
 

Figure 3 provides a schematic overview of the 
simulated POC network to illustrate and study L3 self-
healing in a dynamic ad-hoc battlefield network 
environment.  The network modeled consists of three IP 
based tactical internets (TI-1, TI-2 and TI-3) 
interconnected via a strategic ATM-based backbone 
(Tactical Backbone) network.  Network elements (TI-
routers /backbone-switches/links) can fail randomly.  In 
the POC simulation, the various switches in the strategic 
backbone segment (labeled as S1 - S6) and routers in the 
tactical segments (labeled as Rx

y, where the subscript is 
the router number and superscript is the TI number that it 
belongs to) were made to fail randomly, to simulate an 
FCS environment.  The block labeled IWU represents an 
Inter Working Unit, that will be used for interworking 
between the IP router-based tactical internets and the 
switch-based (connection-oriented) strategic ATM 
backbone segment. The arrivals to the network were 
modeled via the module labeled "arrival process", and 
the random failures were modeled using a variety of 
probabilistic distributions and labeled as "failure 
process" in Figure 3.  L3 self-healing was designed and 
incorporated in the simulation model. Two sets of 
applications were used: (a) mission critical set and (b) 
non-mission critical set.  The average restoration delays 
for class (a) and (b), were 75 msecs and 280 msecs, 
respectively.  The restoration losses (i.e., the fraction of 
affected applications that were not restored) were O(10-5) 
and O(10-4), respectively, for classes (a) and (b).  
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Finally, before we conclude this section, we 

observe that our proposed self-healing mechanism offers 
an additionally powerful feature, namely, the capability 
to take proactive steps in case of "impending" soft 
failures.  This may be achieved by simply linking the PM 
sub-system with the proposed self-healing mechanism in 
a manner such that the latter (i.e., self-healing 
mechanism) is made aware of any impending soft 
failures by checking for thresholds and "low/high-water 
mark" crossings.  In fact, policies may be defined that 
look for performance abnormalities in the network, and 
apply rules to ensure that they are not transients and take 
corrective actions before a soft failure occurs.  Once 
again, this can be extremely useful, especially when 
mission critical applications are involved. 
    

4. CONCLUSIONS AND FUTURE WORK3 
 

In this paper, we described a strategy for fault 
correlation and self-healing for FCS networks. We have 
designed and evaluated several fault localization 
algorithms using a layered fault propagation model 
transformed into a belief network. Other simulation 
results point to interesting properties of these algorithms 
that make them even more suitable to the FCS 
environment: resiliency to noise, ability to deal with 
spurious and lost symptoms, and ability to handle both 
positive and negative information [Steinder02b]. We are 
currently in the process of designing more detailed 
simulations of mobile battlefield wireless networks in 
which to test out these algorithms in order to understand 
the impact of mobility on the fault correlation 
framework.  With regards to the survivability 
mechanisms, we described a novel adaptive policy-based 
multi-layer multi-service self-healing mechanism that is 
sensitive to the cost, performance and complexity aspects 
in an FCS environment.  We also illustrated the excellent 
potential of the proposed mechanism via proof-of-
concept simulations of a tactical battlefield network 
consisting of a strategic backbone segment 
interconnecting several mobile router-based tactical 
internet segments. Additionally, our qualitative 
assessment of the complexity-aspects provides valuable 
insights into the ease of deployment of the proposed self-
healing mechanism.  As continuing work, we will 
incorporate the deterministic and relatively easier 
limited-form of L1 self-healing and also perform 
quantitative assessment of the self-healing related 
interactions. The proposed self-healing mechanism also 
has the capability to perform proactive fault tolerance, an 
extremely useful feature in an FCS environment.  

 

                                                           
3 The views and conclusions contained in this document are those of 
the authors and should not be interpreted as representing the official 
policies, either expressed or implied of the Army Research Laboratory 
or the U.S. Government 
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